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Abstract 

There is no standard procedure for calculating the generalized temperature integral, instead myriads of different 

approximations to it are applied in the processing of thermogravimetric analysis data. This work presents first an 

integration procedure based on the Simpson rule that generates reference values of the generalized temperature 

integral. It also reviews the available representations of the temperature integral in power series, and presents the 

conversion of its generalized form into the form of special functions. From the comparison with the reference values 

from integration it was concluded that for argument values of practical interest the generalized temperature integral 

is best computed as the incomplete gamma function. 

Keywords: Incomplete gamma function, Temperature integral, Thermogravimetric analysis. 

Resumen 

No hay un procedimiento normalizado para calcular la integral de temperatura generalizada, en lugar de eso, 

cantidades de aproximaciones distintas de ella son aplicadas en el procesamiento de datos de análisis 

termogravimétrico. Este trabajo presenta primero un procedimiento de integración basado en la regla de Simpson que 

genera valores de referencia de la integral de temperatura generalizada. También se realiza una revisión de las 

representaciones en series de potencias disponibles para la integral de temperatura, y se presenta la conversión de su 

forma generalizada a la forma de las funciones especiales. De la comparación con los valores de referencia obtenidos 

por integración se concluyó que, para valores de interés práctico de los argumentos, el mejor cálculo de la integral 

generalizada de temperatura se obtiene con la función gama incompleta. 

 

Palabras clave: Análisis termogravimétrico, Función gama incompleta, Integral de temperatura. 
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1. Introduction 

The temperature integral (Equation 1) is, 

𝑝(𝑥) =  ∫ 𝜒2exp(−𝜒)𝑑𝜒
∞

𝑥

 (1) 

(also named Arrhenius integral) is used in many 

non-linear analysis regression methods of 

thermogravimetric data as the solution of the 

differential equation that represents the variation 

in time of the fractional extent of conversion, or 

its integration between consecutive values (1-3). In 

the field of thermal analysis most integral results 

are based on some approximate representation of 

𝑝(𝑥) (general-purpose mathematical software, 

for example spreadsheets, do not include the 

temperature integral). But despite their 

prevalence in thermal analysis these 

approximations are in fact not necessary: 𝑝(𝑥) 

and its generalized form 𝑝𝑚(𝑥) can be calculated 

with specific series representations, and more 

importantly they can be rewritten in terms of the 

special functions (4). 

 

Thermogravimetric analysis (TGA) has become 

a common technique for chemisorption, thermal 

decomposition, and solid-gas reactions. For the 

most part analysis of thermogravimetric data is 

settled in the ICTAC Kinetics Committee 

recommendations (5,6); but it is still an active 

research area and new methods have appeared 

after the ICTAC publications (7-9). There are also 

some aspects of TGA data analysis, such as heat 

inertia, still under development (10,11); while some 

others, like the use of logistic equation have been 

criticized (12). In our previous work both the 

prevalence of the linear regression and the use of 

approximations to 𝑝(𝑥) were rebutted 

developing a non-linear regression method for 

thermal analysis data based on the general form 

of the temperature integral (4).  

In this explanatory work we focus solely on the 

calculation of 𝑝𝑚(𝑥) with special functions, 

starting with the development of a rigorous 

integration method to obtain benchmark values 

of the temperature integral for any value of m or 

x. This required two related tasks explained in 

Section 3, first a tiny stepsize was chosen 

minimizing the error associated to the integration 

method; and second, and an algorithmic 

equivalent of the infinity upper limit was 

established. Next, in Section 4, an overview of 

available direct representations of 𝑝(𝑥) in power 

series is presented followed by the 

transformation of 𝑝𝑚(𝑥) into special functions. 

Finally, the choice of the incomplete gamma 

function (Γ) is justified by comparisons against 

the numerical integration results. This 

conclusion is relevant not only for data analysis 

but also for the testing or calibration of the 

software built in, or included with, TGA 

instruments which is proprietary and tends to 

operate as a black box. 

 

2. Generalization of the temperature 

integral 

 

In thermal kinetics the fractional extent of 

conversion (α) is usually written as the product 

of the Arrhenius rate constant and a kinetic 

function 𝑓 (Equation 2): 

 

𝑑𝛼

𝑑𝑡
= 𝐴exp (−

𝐸

𝑅𝑇
) 𝑓(𝛼) (2) 

 

Where 𝑅 is the ideal gas constant, and the 

activation energy 𝐸 is also constant. But in some 

variants of this model the preexponential factor 

is a function of temperature in the form of the 

Equation 3: 

𝐴 = 𝐴0𝑇𝑚 (3) 
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Where 𝐴0 is a constant (13). Integration of Eq. (2) 

with a constant heating rate β leads to Equation 

4: 

∫
𝑑𝛼

𝑓(𝛼)

𝛼

0

=
𝐴0

𝛽
(

𝐸

𝑅
)

𝑚+1

[𝑝𝑚(𝑥) − 𝑝𝑚(𝑥0)] (4) 

Where Equation 5 is the general form of the 

temperature integral, being 𝑝 a particular case of 

𝑝𝑚 with 𝑚 = 0 and 𝐴 = 𝐴0. 

 

𝑝𝑚(𝑥) = ∫ 𝜒−(𝑚+2)exp(−𝜒)𝑑𝜒
∞

𝑥

 (5) 

The integration variable 𝜒 is dimensionless, and 

the temperature defines the lower limit 𝑥 =

𝐸/𝑅𝑇, but it implies that the limit 𝑇0 → 0 

becomes  x→ ∞. This indeterminate limit does 

not allow an analytical solution, but at the same 

time relates 𝑝𝑚 with the special functions, as it 

will be explained in Section 4. On the other 

hand, the upper infinity limit is certainly an issue 

for the numerical integration of 𝑝𝑚, but it is 

solved in the next section.  

 

For the comparisons between 𝑝𝑚 values from 

formulas and from numerical integration in the 

following sections we chose 𝑚 =

−3, −2.5, … ,0, … ,3  because values of 𝑚 

between -1.5 and 2.5 in 0.5 increments have 

been reported for solid decomposition and gas-

solid reactions (13). It is true that temperature-

dependent preexponential factors are much less 

common than constant As, but our analysis of the 

general temperature integral covers 𝑝(𝑥) as the 

particular case 𝑚 =  0, and 𝐴 = 𝐴0. Lower limit 

values were set as 𝑥 = 1,2,5, … ,100 because 𝑥 

values in the interval [5,100] have been 

considered of practical significance (14). 

 

3. Numerical integration  

There are no sources of exact values for 𝑝𝑚(𝑥), 

it does not have analytical solution and even the 

tables for 𝑝(𝑥) are rare, for example the Vallet 

compilation was published last in 1961 (1, 15, 16). 

However 𝑝(𝑥) reference values have been 

obtained by means of numerical integration, with 

the trapezoidal rule, or the integration routine 

included in the software Mathematica (17-20).  

 

In this work the reference values were also 

calculated by numerical integration the with the 

Simpson 3/8 rule. It was chosen as a compromise 

between accuracy and efficiency, after 

considering that for the same stepsize (ℎ) the 

most intricate methods offer a better accuracy 

than the simple ones, but given that accuracy is 

inversely proportional to the stepsize, even 

simple methods can produce a very low error 

using a tiny ℎ.  

 

Following the Simpson 3/8 rule the temperature 

integral is approximated as the area sum 

(Equation 6): 

 

𝑝𝑚(𝑥) = 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑖 + ⋯ (6) 

Where each term is calculated in a subinterval of 

length 3ℎ with the Equation 7: 

 

𝐴𝑖 =
3ℎ

8
[𝑓(𝜒0,𝑖) + 3𝑓(𝜒1,𝑖) + 3𝑓(𝜒2,𝑖) + 𝑓(𝜒2,𝑖)] (7) 

Evaluating the argument of the integral, 𝑓(𝜒), at 

the points 𝜒0,𝑖 =  𝑥 + 3(𝑖 − 1)ℎ, 𝜒1,𝑖 = 𝜒0,𝑖 +

ℎ , 𝜒2,𝑖 = 𝜒0,𝑖 + 2ℎ , and 𝜒3,𝑖 = 𝜒0,𝑖 + 3ℎ  (21, 22). 

 

It was also necessary to define the value of ℎ, but 

the only guideline found in the literature was a 

temperature stepsize of 10−2K, which is useless 

as the integration variable is 𝑥 = 𝐸/𝑅𝑇, not 𝑇 
(19). In order to choose a stepsize 𝑝𝑚s obtained 

with ℎ values from 1 down to 10−5 were probed, 

finding that the averaged relative difference 
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(Figure 1) is less than 1% for any stepsize ℎ < 1, 

and that the avgs were almost the same for ℎ =

10−4 and ℎ = 10−3. Although these results 

suggest that a stepsize of 0.001 is enough the 

reference values of  𝑝𝑚(𝑥) were calculated with 

a stricter value of ℎ = 10−5, which is  much 

smaller than typical values of 𝜒. The associated 

error in the Simpson 3/8 rule is |(3ℎ5/

80)𝑓(4)(𝜉)| = 3.75 × 10−27 × |𝑓(4)(𝜉)|, where 

𝜉 is a value between the limits of integration (22). 

 

Figure 1. Averaged relative difference in 𝒑𝒎(𝒙) values 

respect to the reference result with 𝒉 = 𝟏𝟎−𝟓  

 

Another issue in the numerical integration of 

Equations 1 and 5 arises from the representation 

of their infinity upper limits with some finite 

value, namely 𝑥∞. An apparently obvious choice 

for  𝑥∞ is the biggest possible real number in the 

system, 1.79 × 10308  in the double precision 64 

bit IEEE 754 standard (23-25), but it would require 

an unbearable long calculation time (a back of 

the envelope estimation for integration with the 

trapezoidal rule using ℎ = 1 and 1𝜇s per step 

yields 3 × 10294 years). 

It was also considered defining 𝑥∞ as the value 

such where the argument of the integral 

vanishes, that is 𝑓(𝑥∞) ≈ 0 ≈ 𝜎, where 𝜎 is the 

tiniest possible real number in the system (𝜎 =

4.94 × 10−324 for double precision variables, 

standard IEEE 754). In this way, Equation 8: 

ln 𝜎 = −(𝑚 + 2) ln(𝑥∞) − 𝑥∞ (8) 

And the results of solving this equation for −3 ≤

𝑚 ≤ 3 lead to 𝑥∞ = 750. However, this 

hypothetical upper limit choice is 

computationally wasteful because for most of the 

𝐴𝑖 terms in Equation 6 the addition is irrelevant 

and unfeasible. It is illustrated here with an 

extreme example: using ℎ = 10−5 and 𝑚 = −3 

the result is 𝑝−3(100) = 3.76 × 10−42, but the 

value of 𝐴𝑖(𝜒 = 600) is 4.77 × 10−263, and the 

following 𝐴𝑖s are even smaller.  

Due to the order of magnitude difference, 10−42 

vs. 10−263, the addition of  𝐴𝑖(𝜒 = 600) and the 

following  𝐴𝑖s does not alter the resulting value 

of 𝑝𝑚, it would only change its 221th and 

following digits, which are irrelevant in the sum. 

Moreover, these hundreds of digits do not exist, 

and are unnecessary, because the calculations of 

TGA data analysis is carried out with standard 

real variables of 15-17 decimal digits, which 

provide enough precision for the estimation of 

parameters (we emphasize that hypothetical 

number representations with hundreds of digits 

are not necessary for TGA data analysis). 

A static upper limit 𝑥∞ was discarded after 

considering the reasons in the previous 

paragraph, but Figure 2 shows that the integral 

argument in 𝑝𝑚(𝑥) decreases asymptotically to 

0, suggesting to use the point where it becomes 

negligible as an equivalent to 𝑥∞. 

 

Figure 2. Areas from Simpson 3/8 rule integration (𝐴𝑖, 

Eq.(7), upper half) and result 𝑝𝑚(𝑥) = ∑ 𝐴𝑖
𝑖
1   (Eq.(6), 

lower half) as function of 𝑖. Results are shown for 𝑚 =

−3, −2, … ,3 with 𝑥 = 1 

In this way the area sum of Equation 6 is stopped 

in a dominant term, identified with the index 𝑖∞ 
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such that the subsequent terms do not 

numerically add to the result (Equation 9). Given 

that 

 

𝑝𝑚(𝑥) = 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑖∞−1 + 𝐴𝑖∞
+ 𝐴𝑖∞+1

+ 𝐴𝑖∞+2 + ⋯ 
  

and  

𝐴1 > 𝐴2 > ⋯ > 𝐴𝑖∞
> 𝐴𝑖∞+1 > 𝐴𝑖∞+2 > ⋯ (9) 

The calculation is stopped at 𝐴𝑖∞  and given that 

all subsequent areas are negligible results 

Equation 10 

∑ 𝐴𝑖

𝑖∞−1

1

+ ∑ 𝐴𝑖

𝑖∞

= ∑ 𝐴𝑖

𝑖∞−1

1

, (10) 

Then, dividing by ∑ 𝐴𝑖
𝑖∞−1
1  results Equation 11 

1 + ∑ 𝐴𝑖

𝑖∞

∑ 𝐴𝑖

𝑖∞−1

1

⁄ = 1. (11) 

The index 𝑖∞ is identified using the floating point 

arithmetic’s machine epsilon, which is eps =

2−52 ≈ 2.220 × 10−16 for 64 bit double 

precision variables (25). It is the amount such that 

numerically 

1 + eps = 1 (12) 

Hence, from the analogy between equations (11) 

and (12) 𝑖∞ is the index 𝑖 of the first 𝐴𝑖 

(Equation 13) such that 

𝐴𝑖∞ ∑ 𝐴𝑖

𝑖∞−1

𝑖=1

⁄ ≤ eps (13) 

and the calculation is stopped when such 

condition is reached. Therefore, from Eq. (7) the 

equivalent upper integral limit is 𝑥∞ = 𝜒3,𝑖∞, 

where 𝑖∞ is the last term in the sum. 

The use of 𝑖∞ produced 𝑥∞ values well below 

750, as shown in Figure 3, and allowed to 

compute the temperature integrals in a 

reasonable time. For the same 𝑥 (lower limit of 

temperature integral), 𝑥∞ decreases with the 

power 𝑚 because it produces smaller 𝑓(𝜒) 

values, and the area sum reaches the point 𝑖∞ 

where 𝐴𝑖∞  becomes insignificant with less terms. 

On the other hand, higher 𝑥 values produce 

smaller initial 𝐴𝑖 values and it is compensated 

with more terms for the sum ∑ 𝐴𝑖
𝑖∞−1
1  in Eq. 

(13), consequently 𝑥∞ increases with 𝑥. 

 

 

 

Figure 3. Upper limit, 𝑥∞  for the integral 𝑝𝑚, calculated 

from 𝑖∞  in Eq. (13). The right plot is a zoom of the area in 

the red rectangle. Results are shown for different 𝑚 values  

 

 

Evaluation of the temperature integral through 

numerical integration seems less efficient than 

the use of special functions, but it has not been 

extensively checked: in the only one comparison 

found in the literature the execution time of the 

trapezoidal rule integration is longer than in the 

Senum-Yang approximation by a factor of 10000 
(19). However, numerical integration can be 

longer than necessary if the stepsize is too small 

(the number of evaluations is inversely 

proportional to ℎ), albeit this minimize the 

implicit truncation error. In fact it was observed 

that even results obtained with ℎ ≈ 1 can have 

an acceptable accuracy. Due to this the effect of 

stepsize was analyzed comparing execution 

times from numerical integration and the 

incomplete gamma function (the representation 

of 𝑝𝑚 in terms of Γ is explained in the next 

section), measured in the same computer, that is, 

with the same combination of hardware and 
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software, for 10−5 ≤ ℎ ≤ 1. The results in 

Figure 4 show that Simpson 3/8 integration 

requires more time than the incomplete gamma 

function, unless stepsize is close to 1. 

 

Figure 4. Averaged quotient of execution times (t, 

numerical integration) / (t, incomplete gamma function)  

 

4. Calculation based on formulas 

Despite the computational raw power available 

in current computers it is more practical to have 

a representation of 𝑝(𝑥) as a function than 

calculating it from numerical integration (in this 

work with Simpson 3/8 rule) each time it is 

required. However, the representations of 𝑝(𝑥) 

found in the literature have limitations. The 

series (Equation 14) 

𝑝(𝑥) =
𝑒−𝑥

𝑥
+ 𝛾 + ln(𝑥) + ∑

(−1)𝑛𝑥𝑛

𝑛 ∙ 𝑛!

∞

𝑛=1

, (14) 

Where 𝛾 = 0.5772156649 ⋯ is the Euler-

Mascheroni constant, is valid for 𝑥 < 𝜋 (15,26). In 

the same way the expansion in series of 

Bernoulli numbers (Equation 15) 

𝑝(𝑥) =
𝑒−𝑥

𝑥2
(−3.5 × 10−6 +

0.998710

𝑥

+
1.984876

𝑥2
+ ⋯ ), 

(15) 

Is valid for 𝑥 ≤ 2 (1,27). Multiple integration by 

parts generates the asymptotic expansion 

(Equation 16) 

𝑝(𝑥) =
𝑒−𝑥

𝑥2 (1 −
2!

𝑥
+

3!

𝑥2 + ⋯ +
(−1)𝑖(𝑖 + 1)!

𝑥𝑖

+ ⋯ ), 

(16) 

But it is reliable only for large 𝑥 values, namely 

𝑥 > 20 (1,15). The Schlömilch expansion 

(Equation 17) 

 

𝑝(𝑥) =
𝑒−𝑥

𝑥(𝑥 + 1)
(1 −

1

𝑥 + 2
+

1

(𝑥 + 2)(𝑥 + 3)

−
1

(𝑥 + 2) ⋯ (𝑥 + 4)
+ ⋯ ), 

(17) 

Has been used occasionally to produce 𝑝(𝑥) 

tables, but it is limited and its results may not be 

precise (1, 15, 27, 28). 

To overcome the limitations of the available 

𝑝(𝑥) representations (Eq. 14-17) the values of 

the temperature integrals were rewritten in terms 

of the more common special functions: the 

exponential integrals 𝐸1 and 𝐸𝑛; and the 

incomplete gamma function, Γ. In this way 𝑝(𝑥) 

becomes in Equation 18 (29) 

𝑝(𝑥) =
𝑒−𝑥

𝑥
− 𝐸1(𝑥) (18) 

While there are two possible forms for 𝑝𝑚 

(Equation 19): 

𝑝𝑚(𝑥) = 𝑥−(𝑚+1)𝐸𝑚+2(𝑥) (19) 

And (Equation 20) 

𝑝𝑚(𝑥) = Γ(−(𝑚 + 1), 𝑥), (20) 

Which is a consequence of the special case 

(Equation 21) (4) 

𝐸𝑛(𝑥) = 𝑥𝑛−1Γ(1 − 𝑛, 𝑥). (21) 

Moreover, the temperature integral 𝑝(𝑥) can also 

be written in terms of these 𝑝𝑚 expressions, with 

𝑚 = 0 

𝑝(𝑥) = 𝑥−1𝐸2(𝑥) = Γ(−1, 𝑥).  
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Special functions are defined in Equations 22, 23 

and 24 

𝐸1(𝑥) = ∫ (𝑒−𝑡 𝑡⁄ )𝑑𝑡
∞

𝑥

, (22) 

  

𝐸𝑛(𝑥) = ∫ 𝑡−𝑛exp(−𝑥𝑡)𝑑𝑡
∞

1

, (23) 

 

Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

𝑥

. (24) 

The exponential integral 𝐸1 was calculated with 

the common series expansion (Equation 25) (30-32) 

𝐸1(𝑥) = − (𝛾 + ln 𝑥 + ∑
(−𝑥)𝑛

𝑛 ∙ 𝑛!

∞

𝑛=1

) (25) 

but in this work it was found that for 𝑥 > 10 it 

results necessary to use the alternate divergent 

series form (Equation 26) (30) 

𝐸1(𝑥) =
exp(−𝑥)

𝑥
∑

𝑛!

(−𝑥)𝑛

𝑁−1

𝑛=0

 (26) 

with 𝑁 = 15 to obtain complete agreement with 

values tabulated in the Handbook of 

Mathematical Functions (32). The incomplete 

gamma function was calculated with the 

continued fraction of the Equation 27 

Γ(𝑥, 𝑎) = 𝑒−𝑥𝑥𝑎 (
1

𝑥 +

1 − 𝑎

1 +

1

𝑥 +

2 − 𝑎

1 +

2

𝑥 +
⋯ ), (27) 

using the Lentz algorithm (21). Γ(𝑎, 𝑥) was 

evaluated even with non-integer and negative 

values of 𝑎, and these results were checked with 

values from Wolfram’s function site (33). The 

numerical evaluation of 𝐸𝑛(𝑥) is very similar to 

the procedure for Γ(𝑎, 𝑥) because this 

exponential integral is a special case of the 

incomplete gamma function (Equation 28) (21, 31, 

34) 

𝐸𝑛(𝑥) = 𝑥𝑛−1Γ(1 − 𝑛, 𝑥) (28) 

with  

𝐸0(𝑥) = exp(−𝑥)/𝑥  

and 

𝐸𝑛(0) = 1 (𝑛 − 1)⁄ .  

In the general case with 0 ≤ 𝑥 ≤ 1 (Equation 

29) 

 

𝐸𝑛(𝑥) =
(−𝑥)𝑛−1

(𝑛 − 1)!
[− ln(𝑥) − 𝛾 + ∑

1

𝑟

𝑛−1

𝑟=1

]

− ∑
(−𝑥)𝑟

(𝑟 − 𝑛 + 1)𝑟!

∞

𝑟=0
𝑟≠𝑛−1

 

(29) 

And the result if 𝑥 ≈> 1 comes from the 

continued fraction in the Equation 30: 

𝐸𝑛(𝑥)  = 𝑒−𝑥 (
1

𝑥 + 𝑛 −

𝑛

𝑥 + 𝑛 + 2 −

2(𝑛 + 1)

𝑥 + 𝑛 + 4 −
⋯ ). (30) 

As expected 𝑝(𝑥) results from 𝑝𝑚=0(𝑥), 

𝑥−1𝐸2(𝑥), and Γ(−1, 𝑥) coincided, but a further 

comparison of 𝑝𝑚(𝑥) against numerical 

integration is presented in the following section. 

5. Comparison 

Temperature integral values from 𝐸1, 𝐸2, and Γ 

(see Section 4) were compared against the 

reference results defining the relative error as 

follows in the Equation 31: 

err = |
𝑝𝑚(𝑥) − 𝑝𝑚,intg(𝑥)

𝑝𝑚,intg(𝑥)
| (31) 

Where 𝑝𝑚,intg is the reference value obtained 

from Simpson 3/8 numerical integration with 

ℎ = 10−5.  

• For 𝑝𝑚(𝑥) = 𝑥−(𝑚+1)𝐸𝑚+2(𝑥) it was 

found that err < 2 × 10−10, except for 

𝑝𝑚(1) with 𝑚 = −3 or 𝑚 =

 −2.5, … , −1.5, … ,2.5. This is an effect 

of “forcing” noninteger or negative 𝑛 

values as arguments of the 𝐸𝑛 function, 

which was originally conceived for 

integer 𝑛 values with 𝑛 > 1 (21). 
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• Results for 𝑝𝑚(𝑥) included 𝑚 = 0, 

therefore err < 2 × 10−10 also for 

𝑝(𝑥) = 𝑝0(𝑥) = 𝑥−1𝐸2(𝑥), for all 𝑥 

tested. Similar results were obtained for 

𝑝(𝑥) calculated with 𝐸1 except with 𝑥 =

10 and 𝑥 = 20. This suggests that it is 

preferable to evaluate 𝑝(𝑥) as 

𝑝𝑚=0(𝑥) = 𝑥−1𝐸2(𝑥) to get a consistent 

relative error. 

Results from incomplete gamma function, 

including 𝑚 = 0, are summarized as follows: 

• For 𝑝𝑚(𝑥) = Γ(−(𝑚 + 1), 𝑥) err <

2 × 10−10 in all cases, including non-

integer 𝑚 values. 

• Results from 𝐸𝑚 and Γ produced very 

similar relative error values, except in 

the aforementioned case  𝑝𝑚(1) with 

𝑚 =  −3 or 𝑚 =  −2.5, … , −1.5, … ,2.5. 

6. Conclusion  

The temperature integral can be computed as 

𝑝𝑚(𝑥) = Γ(−(𝑚 + 1), 𝑥) for any 𝑚, integer or 

non-integer and 1 ≤ 𝑥 ≤ 100. Application of the 

exponential integral, 𝐸𝑚+2, is restricted to 

integer 𝑚 values such that 𝑚 ≥ −2. The 

incomplete gamma function is preferable to the 

exponential integral because application of 𝐸1 to 

calculate 𝑝(𝑥), although valid, can produce 

higher relative errors than the other two 

functions for high 𝑥 values. 
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