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Resumen
La contaminación del aire por monóxido de carbono (CO) es uno de los principales factores que afecta la 
calidad del aire en las grandes ciudades, pues está directamente relacionado con las actividades urbanas. El 
comportamiento medio y de la variabilidad de las concentraciones de CO a lo largo de un día varía constantemente 
debido principalmente al tráfico vehicular en el lugar. El objetivo de este trabajo es proponer un modelo de 
suavización no paramétrico para la concentración horaria de CO en el aire, considerando varianza no constante, 
que permita describir su comportamiento a lo largo de un día. Para esto se usaron los registros de contaminación 
por CO en una estación ubicada en el centro de la ciudad de Cali, Colombia. Se estimaron las curvas por medio 
de regresión lineal local y la función de varianza por medio de un estimador de la función de varianza. Las 
curvas estimadas permitieron describir el comportamiento del CO, mostrando mayores concentraciones en 
horas “pico” y menores en la madrugada, además la estimación de una función de varianza permitió modelar de 
mejor forma el comportamiento heterocedástico de los datos.

Palabras claves: contaminación atmosférica, estimadores basados en diferencias, monóxido de carbono, 
regresión no paramétrica. 

Abstract
Air contamination by carbon monoxide (CO) is one of the main factors affecting the air quality in big cities, 
since it’s directly related to urban activities. The CO concentrations variability average behavior changes 
constantly mainly due to the traffic in the place. The objective of this article is to propose a non-parametric 
smoothing model for the hourly CO concentration in the air, considering non-constant variance that allows the 
description of its behavior through the day. To this end, contamination records by CO in a downtown pollution 
monitoring station in Cali, Colombia were used. Curves were estimated by using local lineal regression and 
variance function through an estimator of variance function. The estimated curves allowed describing the CO 
behavior, showing bigger concentrations in rush hours and smaller concentrations in the early morning, besides 
the variance function estimation allowed to better model the data’s heteroscedastic behavior.

Keywords: atmospheric contamination, carbon monoxide, difference-based estimators, non-parametric regression.
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1. Introduction

The development going on since the 20th century 
has notoriously changed the demographic 
characteristics of Latin American population, 
so that nowadays more than 70% of these 
countries population is located in urban areas, 
and in Colombia most of the urban population 
is concentrated in four main cities (Jaramillo 
et al., 2009). Because of this, the industrial and 
economic activities and the constant vehicles 
circulation have increased rapidly in urban 
centers, in some cases, without a good planning 
in environmental terms, which creates in the end, 
harmful effects to the environment that affect life 
quality of the citizens (Romieu et al, 1991).

Air pollution in the cities, that it is a product 
of human activities, has a negative impact on 
people’s health, these effects go from short time 
effects such as eye and nose irritation and sore 
throat to chronic respiratory diseases (Xia & 
Tong, 2006). These consequences can be worse 
on people with chronic diseases, children and 
the elderly. Amongst all of the contaminants 
that can be found in a city we find CO, which 
is produced by the incomplete combustion 
of hydrocarbons, being the emissions from 
vehicles’ exhausts the main source in urban 
areas (Georgoulis et al, 2002). Due to this CO’s 
behavior is highly determined by vehicle’s 
circulation and industrial activities. According 
to Samoili et al (2007) CO concentration shows 
a spatially heterogeneous behavior in a city, but 
its biggest concentrations appear in places with 
high volume of traffic.

Due to the fact that CO concentration is highly 
related to urban activities, it is important to study 
how its behavior is throughout the day, since 
high values are expected to show up when there 
is high activity, for instance, in rush hours when 
the volume of traffic is higher. Reina & Olaya 
(2012) and Montoya et al (2005) have shown 
that the non-parametric regression techniques, 
such as spline or local regression, are appropriate 
to modeling the daily behavior of contaminants 
and are also useful in the decision making about 
air quality, emphasizing the use of variability 
bands to the comparison of different estimated 
curves for contaminants. However, to use these 

bands it is necessary to estimate the variance in 
the contaminant concentration for each hour of 
the day; generally this is assumed as constant 
and one of the estimators proposed in literature 
is used (Rice 1984; Gasser et al, 1986; Hall et 
al, 1990). But the hourly behavior of CO does 
not seem to adjust to this assumption, since the 
variability measures seem to be higher when 
there is a higher human activity and vice versa. 
In these cases the use of alternative techniques 
for the use of variability bands is necessary.

Taking into account the negative effects of 
this contaminant over the population, a tool 
to understand its behavior throughout the day 
becomes relevant, this would allow to take 
control and prevention measures. Therefore the 
main purpose of this paper is to propose a non-
parametric model for the hourly behavior of 
the CO concentrations using non-homogeneous 
variability bands, using the variance estimator 
proposed by Brown & Levine (2007).

In order to illustrate this model the CO hourly 
measuring records from 2004 in a pollution 
monitoring station located in downtown Cali, 
Colombia (station named CALLE15) were used. 
This station is one of interest due to its location 
on a zone of high commercial activity, besides 
a high volume of traffic and pedestrian activity. 
The data used for this was provided by the Red 
de Monitoreo de la Calidad del Aire (RMCA) 
of DAGMA, which in 2006 had 8 fixed stations 
located in different sectors of the city. From 
2010 on the RMCA restarted operations, but 
only with 2 fixed stations located in the north 
of the city.

2. Methodology

2.1 Non-parametric regression model

Härdle (1990) suggests that non-parametric 
regression has as an objective to adjust a 
regression curve that describes the relation 
between the variables xi and yi, where is 
considered that xi explains the value of yi. If n 
observations appear (xi, yi), the regression curve 
is commonly modeled as:

( )y m xi i if= +                       (1) 
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Where ε is a random variable that indicates the 
variation of Y around m(x), that represents the 
mean of the regression curve E (Y|X = x). Besides 
it has to be assumed that εi have E(εi) = 0 and 
var(εi) = σ2 < ∞.

In the framework of non-parametric regression 
estimations through variability bands can be 
made, these are equivalent to the confidence 
intervals in parametric regression, where 
it’s necessary to have variance estimation. 
In literature several variance estimators can 
be found, such as the estimators based on 
differences proposed by Rice (1984), Gasser et 
al (1986) and Hall et al (1990). In some cases 
it’s not possible to assume that the variance 
of εi is constant, but that it depends on the 
independent variable (xi), because of this a 
variance estimation different from the above 
mentioned would be needed. For the estimation 
of a heteroscedastic model in Brown & Levine 
(2007) the regression model is set in this way: 

( ) ( )y m x f xi i i ie= +               (2)

And a variance function estimation f(x) through 
a smoothing that reflects the variability of m(x) 
in function of x is proposed.

2.2 Estimation of the regression curve

As mentioned in Olaya (2012) the goals of the 
analysis of the non-parametric regression are the 
same than its parametric counterpart. It’s valid 
to say, estimate and prove the characteristics 
of the regression function. The procedure to 
estimate the regression function m in model (1) 
in the framework of non-parametric regression 
is called smoothing.

To use smoothing techniques, unlike parametric 
regression techniques that possess several 
assumptions in the model, it’s only necessary 
to assume that m is smooth, which could say 
that for the curve adjustment in a determined 
point of x, is expected that observations yi 
associated to xi near x, possess information of 
m in the interest point of x (Eubank, 1999). For 
the function to be smooth it must be considered 
that m belongs to a space of functions W, where 
W is assumed as the group of all functions 

m that have k continuous derivatives in (a,b)  
(Olaya, 2012).

This said, these methods make a weighted 
average of yi depending on the distance of xi, 
where the most common smoothers are the 
linear estimators that look like: 

( ) ( , ; )x n K x x yi ii

n
i

1

1
m= -

=
/             (3)

Where K (x, xi; λ) is a collection of weights 
that depend on the smoothing technique, the 
distance between points {xi; i = 1, 2,... , n}, 
point x of estimation and of a λ > 0 called 
smoothing parameter, in charge of determine 
the smoothing degree to the data. Therefore λ is 
the only parameter necessary to be estimated for 
the adjustment of the curve.

One of the most used linear estimators is the 
local average estimator or Nadayara-Watson, 
which is a modification of (3) where it’s assured 
that the addition of weights equals one. This 
estimator is defined as: 
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Where K is a Kernel function that is in charge 
of assigning weight to the observations near the 
point of estimation x, with the characteristic that 
the weights of this estimator do not depend on the 
group of values X that intervene in the estimation.

Another choice for the construction of the data 
local average is to adjust a local linear regression 
(Azzalini & Bowman, 1997), as shown in (5).
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where: sr (x; λ)={∑(xi-x)r K(xi - x; λ)} n-1

Same as estimator (4), the objective of weight 
function K is to guarantee that the observations 
near x have a bigger weight on the estimations. 
Fan & Gijbels (1996) show the excellent 
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theoretical properties of this estimator. In 
particular, the estimations near to the boundaries 
through local linear regression are superior than 
the ones through local average.

The smoothing parameter λ determines the 
width of the Kernel function, therefore, if λ 
is small, the estimations will be close to the 
observed values, a small bias, but acquiring 
a high variability. Otherwise, the estimation 
will be too smooth, reducing the bias, but the 
variance would increase (Azzalini & Bowman, 
1997). Taking this into account, the selection 
of an optimal λ becomes important in the 
adjustment of the estimated curve.

Cross validation is the most used method for the 
selection of the smoothing parameter (Azzalini 
& Bowman, 1997), which consists in finding a 
λ that reduces the mean quadratic error of m(xi). 
This method is based on the prediction of the 
answer in point xi through the adjustment of 
the curve with the remaining observations{xj, 
yj}, i ≠ j.  Taking that into account the cross 
validation function is defined as: 

( ) ( ( ))CV n y m x1
i ii

n
1

2

1
m = - -=

t/
       

(6)

For a point xi, its prediction is denoted as m-i(xi), 
where the sub index –i indicates that observation 
(xi, yi) was omitted . Therefore the cross validation 
method consists of finding the value of λ that 
makes function (6) minimum.

2.3 Variability bands

In any statistics modeling the representation 
of the estimated curve through confidence 
intervals is of great usefulness, since these 
indicate the degree of uncertainty associated to 
the estimation of m(x). One of the assumptions 
made while forming confidence intervals is that 
errors are normally distributed, in which case 
the confidence interval can be made through the 
following pivotal quantity: 

( )
( ) ( ) ( )

( , )
v x

m x m x b x
N 0 1+

- -
t

t

       (7)

Where v̂(x) indicates the variance of m̂(x) and b(x) 
indicates the estimation bias. The inconvenience 
resides in the fact that the estimation of b(x) 
could become a complex problem (Azzalini & 
Bowman 1997).

One alternative is the use of variability 
bands, these can be used as an indicator of 
the variability level involved in the non-
parametric estimation without attempting 
to adjust for the inevitable presence of bias 
(Azzalini & Bowman 1997). The difference 
with the confidence intervals is that the bands 
indicate pointwise confidence intervals for 
E(m̂(x)) instead of m(x), therefore one must 
be careful with the interpretations. Taking that 
into account, they can be formed by indicating 
the size of two standard errors above and 
below the estimation. Where it would have a 
variability estimation of m̂(x).

2.4 Estimation of the variance

Due to the estimations of  m(x) are biased, 
in the non-parametric context there is a 
considerable number of estimators of σ2, 
where the difference-based estimators that use 
yi responses associated to a predetermined 
neighborhood of x, are the most used since these 
have the advantage of not depending explicitly 
of the smoothing technique that is being used 
(the order of the differences is determined by 
the number of successive observations used for 
the calculations of the local pseudo-residual). 
These types of estimators are presented in a 
general way by Gasser et al (1986) and Hall 
et al (1990).

Brown & Levine (2007) do not suggest a point 
variance estimation, instead they suggest the 
estimation of a variance function, in order to do 
that, consider the model suggested in (2).

Where it’s assumed that the errors ϵi are 
independent and identically distributed N(0,σ2), 
it is assumed for convenience that the design is 
fixed. The main idea is that the variance does 
not follow a necessarily constant behavior for 
all x, but this is ruled by an unknown function 
f(xi) and the purpose is to estimate it in the 
presence of m(x).
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Brown & Levine (2007) propose that the 
variance function can be estimated as a 
weighted local average of the square of the 
pseudo residuals of the order r. Where each 
pseudo residual is a normalized difference of 
the observations r + 1, defined as: 

d y,r i j j ij

r

0

1
D = +=

-/                   (8)

Where the differences {dj} satisfy the conditions 
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Where λ is the bandwidth proposed and K is a 
Kernel function. Therefore the pseudo residuals’ 
squares are defined and then locally smoothed 
in order to produce a Kernel estimation of the 
variance. Given that ,r i

2D  are not independent; 
this estimator is not equivalent to the Nadayara-
Watson estimator.

3. Results and discussion

3.1 Descriptive statistics

In order to know the behavior of the hourly 
CO concentration throughout an ordinary 
day, Figure 1 shows through a boxplot the 
contaminant for each hour of the day in ordinary 
days (Monday through Friday) and non-ordinary 
days (Saturday, Sunday and holidays). It can be 
appreciated that the CO behavior during ordinary 
days have its maximum level of concentration 
around 8 am, at this time it starts descending 
until approximately 4 pm where another peak 
appears and later on the observations drop 
to the minimum in the early morning period, 
between 0 hours and 6 am. During non-ordinary 
days the levels of the contaminant show lesser 
magnitudes, noticing a maximum peak between 
10 am and 12 pm. Besides this average behavior 
it is noticed that the CO distributions for every 
hour, present different dispersions, very spread 
distributions in rush hours and only a small 
dispersion in the early mornings, which can 
suggest a heteroscedastic behavior.

3.2 Regression curve

The variance function estimation for both 
ordinary days and non-ordinary days is made 
through the smoothing of the squared pseudo-

Figure 1. Boxplot and wire diagrams timetable for CO concentration levels in 
CALLE15 station in ordinary days (a) and weekends (b)
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residuals, using the local linear regression 
estimator (5) and a bandwidth estimated by 
cross validation (λ = 0.313) which are expected 
to show the heteroscedasticity of the data. In 
Figure 2 the behavior of the pseudo-residuals 
can be appreciated for the data in both types of 

days, where it is clear that for ordinary days the 
higher values are between 7 am and 9 am, the 
hours of higher dispersion in CO concentration, 
while the smooth curve presents lesser values 
during the early morning, which is expected 
since at that time we found the lowest dispersion. 

Figure 3. Typical daily curve for the hourly concentration of CO in the station 
CALLE15 on an ordinary day (a) and weekends (b)

For non-ordinary days a similar behavior 
can be found although in lesser magnitude. 
Taking this into account, the smooth curve of 
the squared pseudo residuals satisfactorily 
represents the variance behavior for the hourly 
CO concentration throughout the day.

Figure 3 presents the daily estimation of the 
typical curves for both types of days using 
the local linear regression estimator (5) and a 
bandwidth estimated by cross validation (λ = 
0.313). The estimated curve for ordinary days 
shows the mean behavior of the hourly CO 

Figure 2. Hourly regression curve of the squared pseudo residuals for ordinary days 
(a) and weekends (b)
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contamination, with maximum concentrations 
around 8 am and a lesser peak around 5 pm, 
besides the minimum values during the early 
morning. In non-ordinary days the estimations 
present much lesser values, although a peak 
can be appreciated around 9 am. These 
graphics also show the variability bands for the 
estimation, taking into account the estimated 
variability function which presents as well wide 
bands in hours when data variability is higher 
and short bands when the dispersion is low. 
For comparison effects the bands for the case 
where the variance is supposed as constant is 
presented, making evident that the bands are 
unnecessarily big during the hours with less 
variability and too small on the opposite case, 
altering the proposed confidence level.

Cyclical behaviors of CO concentrations 
during an ordinary day, where two maximums 
are noticed throughout the day and the lesser 
magnitude curves for non-ordinary days, are 
coherent with the hypothesis that says that 
vehicles circulation and human activities are the 
main causes of high level of pollution. It could 
be noticed that during rush hours -when the 
traffic volume is higher- the biggest measures 
for CO appeared. Besides on weekends when 
there’s less commercial activity in downtown 
the curves had lesser levels.

It was noticed that CO distributions for each 
hour have different variability; therefore Brown 
& Levine (2007) proposal for the estimation 
of the variance function was accurate. This 
estimation represented in a more realistic way the 
heteroscedastic behavior of the variable. This is 
reflected in the estimated variability bands, since 
they show higher variability in hours when the 
dispersion was higher and vice versa. The use of 
bands assuming constant variance could lead to 
erroneous conclusions since it would be altering 
their confidence level.
	
4. Conclusions

Taking into account that the negative impact 
on people’s health depends on exposure time 
and the contaminants concentration (Samoli 
et al, 2007). The estimated curves are of 
great importance to the entities in charge of 

controlling the quality of air, since they can be 
used to generate policies for the reduction of 
pollution levels, especially during hours when 
the levels are at maximum.

The use of a model that allows the modeling 
of contaminants concentrations in the air 
during an ordinary day will act as a supply so 
the entities in charge of health can promote 
epidemiology studies that determine the 
impact that the exposure to the contaminants 
has on health, particularly on the population 
that is exposed during long periods of time 
on hours where the concentration is higher. 
According to the negative effects and the 
estimated curves of the hourly concentration 
of contaminants, preventive measures can be 
created for the population of higher exposure 
in these places.

Non-parametric regression methods and the 
variance function estimator used are useful 
tools for the modeling of the daily behavior 
of the contaminants concentration. For these 
contaminants show very variable behaviors in 
the average and variance which makes difficult 
the use of a parametric technique.

The introduced model although it models 
the heteroscedastic behavior of the hourly 
concentration of CO, does not take into account 
other atmospheric and climatological factors 
that could alter the regular behavior of the 
contaminants, such as temperature, wind speed or 
precipitation (Reina & Olaya, 2012; Montoya et 
al, 2005). Therefore the use of generalized additive 
models (GAM) (Hastie & Tibshirani, 1990) is 
recommended, these allow the introduction of 
these covariates in the non-parametric model and 
this way obtain a model that can better describe 
the contaminants behavior.

One aspect to take into account is the temporary 
correlation that the data could show, since this 
alters the bandwidth selection through cross 
validation, giving values of λ that can over 
smooth the curve estimation (giving biased 
estimations) if there is a negative correlation, 
or leads to a interpolation of the data (high 
variability estimations) if the correlation is 
positive. For this, several authors (Altman, 
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1990; Hart, 1991; Opsomer et al 2001) have 
proposed a series of bandwidth selectors based 
on the structure of data correlation.

The same correlation problem appears for 
the estimation of the variance function. An 
alternative proposed by Brown & Levine (2007) 
is the use of the cross validation k-fold, which is 
not based on the prediction of each observation 
through the adjustment of the curve with the 
remaining observations, but on the prediction in 
k groups of observations.

Although non-parametric regression models 
were a satisfactory way for the modeling of 
this contaminant, the functional data analysis 
(Ramsay & Silverman, 2005) could also be used, 
since on data structure the hourly observations 
of each day could be treated as functional data 
for its modeling.
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