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Abstract 
A disparity map is the output of a stereo correspondence algorithm. It is estimated in an intermediate step of a 
3D information recovery process, from two or more images. A performance assessment of stereo correspondence 
algorithms may be addressed by a quantitative comparison of estimated disparity maps against ground-truth data. 
This assessment requires of the use of a methodology, which involves several evaluation elements and methods. 
Some elements and methods have been discussed with more attention than others in the literature. In the one hand, 
the quantity of used images and their relation to the application domain are topics rising large debate. On the other 
hand, there exist few publications on evaluation measures and error criteria. In practice, contradictory evaluation 
results may be obtained if different error measures are used, even on a same test-bed. In this paper, an evaluation 
methodology for stereo correspondence algorithms is presented. In contrast to conventional methodologies, it allows 
an interactive selection of multiple evaluation elements and methods. Moreover, it is based on a formal definition of 
error criteria based on set partitions. Experimental evaluation results showed that the proposed methodology allows 
a better understanding and analysis of algorithms performance than the Middlebury methodology. Final remarks 
highlights the relevance of discussing on the different elements and methods involved in an evaluation process. 

Keywords: Evaluation criteria, evaluation methodologies, evaluation models, stereo correspondence. 

Resumen
Un mapa de disparidad es la salida de un algoritmo de estimación de puntos correspondientes, el cual es estimado 
en una etapa intermedia del proceso de reconstrucción de la profundidad a partir de dos o más imágenes. La 
comparación del desempeño de un grupo de algoritmos de estimación de correspondencia puede hacerse mediante 
una evaluación cuantitativa de mapas de disparidad contra mapas de referencia. Está evaluación requiere de una 
metodología, la cual involucra  diversos elementos y métodos. Algunos de estos elementos y métodos han recibido 
más atención que otros en la literatura. La cantidad de imágenes utilizadas, y la relación entre el contenido de las 
mismas y los diferentes dominios de aplicación han sido temas de amplia discusión en la literatura. Por otra parte, 
existen pocas publicaciones que aborden los temas relacionados con las medidas y los criterios de evaluación. En 
la práctica, el uso de diferentes medidas podría conllevar a la obtención de resultados contradictorios, empleando 
inclusive un mismo conjunto de pruebas. Adicionalmente, las particularidades de diferentes dominios de aplicación 
pueden implicar requerimientos variables durante el proceso de evaluación. En este artículo se presenta una 
metodología de evaluación para algoritmos de estimación de correspondencia en imágenes estéreo. La metodología 
se considera como aumentada en la medida que, a diferencia de las metodologías convencionales, permite una 
selección interactiva de diferentes elementos y métodos de evaluación, con diferentes propiedades. En la presente 
metodología, se formaliza el concepto de criterios de error, mediante la teoría de conjuntos. La experimentación 
realizada mostró que el uso de la metodología propuesta provee resultados innovadores, realzando la relevancia de 
una discusión en los diferentes elementos y métodos involucrados en el proceso de evaluación. 

Palabras clave: Correspondencia estéreo, criterios de evaluación, metodologías de evaluación, modelos de 
evaluación.
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1. Introduction

A quantitative comparison of estimated 
disparity maps allows evaluating, in a fair basis, 
the performance of Stereo Correspondence 
Algorithms (SCA) as well as algorithmic 
components and procedures, (Scharstein & 
Szeliski, 2002; Neilson & Yang, 2008; Cabezas 
and Trujillo, 2013), among others. An evaluation 
process can be addressed using either a qualitative 
or a quantitative approach. Although a qualitative 
evaluation approach, which is based on human 
viewing experiences, may properly take into 
account factors that are complex to quantify in 
an automatic process (Trucco & Ruggeri, 2013), 
it is time and resources consuming. Moreover, 
obtained results may be not repeatable (Wang et 
al., 2004). A quantitative evaluation of SCA can be 
automatically addressed using Disparity Ground-
Truth Data (DGTD). However, the generation 
of DGTD may impose constraints on content of 
captured imagery test-bed (Geiger et al., 2012). In 
practice, quantitative evaluation methodologies, 
which are based on comparing estimated disparity 
maps against DGTD, are widely adopted. In 
general, an evaluation methodology for assessing 
estimated disparity maps is composed by a set of 
elements and methods, which interact following a 
sequence of steps, as it is illustrated in Figure 1. 
Two fundamental evaluation element and method 
are error criteria and error measures, respectively. 
Error criteria define image regions of interest, on 
which errors are calculated, allowing a detailed 
evaluation according to the application domain. 
Error measures quantify differences among 
estimated data and ground-truth data.

Most of published papers introducing SCA rely 
on the use of the Middlebury’s methodology 
(Scharstein & Szeliski, 2002; 2013). This 
methodology can be analyzed based on the 
evaluation elements and methods depicted in 
Figure 1. In particular, three aspects require 
attention for the sake of the discussion presented 
in this paper: the error measure, the error criteria, 
and the evaluation model. Regarding the error 
measure, the Middlebury’s methodology uses the 

Figure 1. Evaluation methodology

percentage of the Bad Matched Pixels (BMP) as 
the error measure. The BMP is a binary function, 
which calculates an estimation error using a 
threshold and ignores the inverse relation between 
depth and disparity along with error magnitude 
(Cabezas et al., 2011). Consequently, it does not 
properly distinguish between a small and a large 
disparity error; neither considers if an evaluated 
point is close or far from the stereo camera system. 
These considerations are illustrated in Figure 
2, assuming a canonical stereo rig. Figure 2(a) 
and Figure 2(c) illustrate how estimation errors 
of a same magnitude – represented by points 
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p’r  and q’r respectively – may cause different 3D 
reconstruction errors by triangulation –represented 
by points P’ and Q´, respectively. Figure 2(b) and 
Figure 2(d) illustrate how a larger estimation 
error magnitude increases the 3D reconstruction 
error by triangulation. These 3D reconstruction 
errors have to be taking into account during an 
evaluation process. The impact of the limitations 
of the BMP measure is illustrated in Figure 3. The 
left view of the Tsukuba stereo image pair and 
associated ground-truth disparity map are shown 
in Figure 3(a), and Figure 3(b), respectively 
(Scharstein & Szeliski, 2013). Figure 3(c) and 

Figure 3(d) show erroneously estimated disparity 
maps. Figure 3(e) and Figure 3(f) show corrupted 
disparity maps by adding salt and pepper noise. It 
can be observed that the calculated disparity maps 
in Figure 3(c) and Figure 3(d) contain errors, in 
the background and the foreground, whilst the 
maps in Figure 3(e) and Figure 3(f) contain a 
similar quantity of errors, but with a small and a 
large magnitude, respectively. In addition, Figure 
3 includes the values of the BMP percentage and 
the Peak Signal-to-Noise Ratio (PSNR) for the 
estimated disparity maps. It is clear that the BMP 
is incapable of distinguishing errors of different 

Figure 2. Disparity estimation errors vs. triangulation errors: (a) small estimation errors of a farther point, (b) larger estimation 
error of a farther point, (c) small estimation error of a close point, (d) large estimation error of a close point
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magnitudes. Regarding error criteria, three of 
them are simultaneously used in the Middlebury’s 
methodology. The disc criterion considers errors 
in points near depth discontinuities. The nonocc 
criterion considers errors in non-occluded points. 
The all criterion includes the points in the whole 
image (i.e. for those which a disparity ground-
truth value is available). Nevertheless, an image 
point may be included in more than one error 
criterion. This is illustrated in Figure 4 using the 
Teddy stereo image. The ground-truth disparity 

map of the Teddy image is shown in Figure 4(a). 
It can be observed that all points included in the 
disc criterion – Figure 4(b) – are also included in 
the nonocc criterion – Figure 4(c). In addition, all 
points included in the nonocc criterion are also 
included in the all criterion – Figure 4(d). The 
relation among the points composing each one 
of the above criterion is illustrated in Figure 4(e) 
using a Venn diagram. Thus, a disparity estimation 
error is counted more than once, biasing final 
scores, in the Middlebury methodology. The 

Figure 3. The Tsukuba stereo image: (a) the left view, (b) the ground-truth map, (c) and (d) erroneous disparity maps, (e) and 
(f) noised disparity maps
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multiple counting of errors is quantified in Table 
1, using the evaluation of the Venus stereo image, 
a set of selected algorithms, and the threshold 
equal to 1 pixel. It can be observed that errors 
associated to the nonocc criterion are in fact errors 
associated to the disc criterion. Moreover, the 
total of score using for ranking is almost twice the 
number of errors in the disparity map. Regarding 
the evaluation model, the model of Middlebury’s 
methodology can be seen as a linear function which 
relates ranks to weights. It is based on sorting 
BMP scores from each error criterion, ranking 
sorted positions, and averaging all rankings in 
order to obtain a final ranking. However, although 

there are different evaluation methodologies 
for evaluating SCA, a unique methodology that 
properly handles all evaluation requirements 
may not exist. This may be due to, in existing 
methodologies, evaluation elements and methods 
are fixed beforehand, assuming that different 
Research and Development (R&D) processes 
will have similar evaluation requirements. 
Consequently, allowed evaluation scenarios are 
fixed. Nevertheless, requirements may indeed 
change according to some particularities such 
as the application domain, or in general, to 
evaluation goals. In practice, problems arise when 
specific components of a methodology do not fit 

Figure 4. Illustration of error criteria (white areas) using the Teddy stereo image, (a) ground-truth disparity map using gray 
levels, (b) disc criterion in white color, (c) nonocc criterion in white color, (d) all criterion in white color, (e) generalisation of 
conventional error criteria using Venn diagram

Table 1. Amount of assigned disparities laying at more than 1 pixel from real disparity values using the Venus image, selected 
algorithms for conventional error criteria, and for introduced error criteria

Algorithms AdaptingBP CoopRegion SurfaceStereo ADCEnsus WarpMat 
Conventional error criteria

Errors disc 152 162 275 121 257
Errors nonocc 152 163 275 129 267
Errors all 319 310 418 382 367
Total Errors 623 635 968 632 891

Introduced error criteria
Errors boundary 152 162 275 121 257
Errors interior 0 1 0 8 10
Errors occluded 197 147 143 253 100
Total Errors 319 310 418 382 367
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to some evaluation requirements, or they do not 
provide proper feedback. Thus, there is a lack 
of an adaptive evaluation methodology allowing 
the selection of diverse evaluation elements and 
methods. Moreover evaluation results may be 
biased due to possible shortcomings of considered 
evaluation elements and methods. In this paper, 
an evaluation methodology for SCA based on 
DGTD is presented. The presented methodology 
introduces a set of error criteria in order to allow 
a proper analysis of disparity estimation errors. 
In addition, it includes two evaluation models 
capable of handling multiple evaluation measures: 
the A* Groups model (Cabezas et al., 2012a), 
which is based on the Pareto Dominance relation 
(Van Veldhuizen et al., 2003), and an extension 
to the Middlebury’s evaluation model (Scharstein 
& Szeliski, 2002). In this way, the proposed 
methodology suited to be used in different phases 
of R&D processes. Experimental results are 
shown in order to exemplify the versatility of the 
presented methodology.

2. Related work

The state-of-the-art is briefly reviewed, in this 
section, using as reference the methodology 
presented in Figure 1. An extensive review and a 
thorough discussion on some mentioned aspects 
can be found in (Cabezas & Trujillo, 2013).

Test-bed images: Ground-truth data can be 
generated by either using a ray tracing algorithm 
–synthetic data–, or, using an active vision 
technique such as structured light (Scharstein 
& Szeliski, 2003) or laser scanning (Geiger et 
al., 2012), among others –real imagery data. 
Synthetic data, generated considering noise 
models, have been used in different approaches 
(Van der Mark & Gavrila, 2006; Neilson & Yang, 
2008). However, introduced noise in a systematic 
way may not necessarily correspond to real image 
capturing conditions. The generation of DGTD 
for real imagery is a challenging task, which is not 
always possible. The Middlebury’s methodology 
use a test-bed of four stereo images (the Tsukuba, 
the Venus, the Teddy and the Cones stereo 

images). It is available in an online evaluation 
platform (Scharstein & Szeliski, 2013). Such 
test-bed is widely known and used by the stereo 
vision community. Regarding the quantity of 
images selected as test-bed, when a small number 
of images are used, obtained evaluation results 
may lack of statistical significance (Cabezas & 
Trujillo, 2013). In general terms, is not convenient 
to consider the obtained results using a particular 
test-bed, as of general character (i.e. to be 
repeatable under a different imagery test-bed) 
(Cabezas & Trujillo, 2011).

Evaluation criteria: The concept of error criteria 
was introduced in (Scharstein & Szeliski, 2002) as 
binary image segmentation. Most of methodologies 
consider evaluation criteria related to disparity 
estimation errors, which are related to challenging 
content for SCA (Scharstein & Szeliski, 2002). 
However, considering aspects such as the consumed 
time and required resources (e.g. memory and the 
use of specialized hardware, among others) may 
enhance the evaluation process.

Evaluation measures: Several evaluation 
measures are available in the literature. The BMP 
is based on counting disparity estimation errors 
exceeding a threshold δ, the most commonly 
used value is 1 pixel (Scharstein & Szeliski, 
2002). The Sigma-Z-Error (SZE) is based on the 
inverse relation between depth and disparity, and 
aims to measure the impact on depth estimation 
of disparity estimation errors (Cabezas et al., 
2011). The Mean Absolute Error (MAE) is based 
on absolute differences. The Mean Square Error 
(MSE) is based on quadratic differences, and the 
Mean Relative Error (MRE) is based on the ratio 
between absolute differences and the ground-truth 
disparity (Van der Mark & Gavrila, 2006). The 
MAE, the MSE, and the SZE are metric functions. 
However, they are unbounded. In (Cabezas et al., 
2012b) is highlighted how obtained evaluation 
results may vary according to the selection of 
error measures. 

Algorithms and/or algorithmic components: In 
the one hand, the estimation of stereo corresponding 
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point can be tackled as an optimization problem 
under a constrained scenario. Consequently, there 
are multiple approaches for estimating disparity 
maps. In the Middlebury’s online benchmark 
(Scharstein & Szeliski, 2013) all the reported 
algorithms are compared regardless the nature 
of their optimisation technique. Moreover, in 
some cases, compared algorithms correspond 
to unpublished works. This makes difficult an 
analysis of obtained results. On the other hand, for 
evaluation purposes, it is expected that SCA be 
executed under the same conditions (i.e. with the 
same information, or with fixed parameters for the 
entire test-bed). However, in practice, this may be 
beyond control of the evaluation methodology.
 
Evaluation models: The linear approach used 
by the Middlebury’s evaluation model has been 
used in other methodologies (Cabezas & Trujillo, 
2013). In contrast, the A* Groups evaluation 
model proposed in (Cabezas et al., 2012a) 
addresses the comparison of SCA as a multi-
objective optimization problem. This non-linear 
model is based on the Pareto dominance relation 
(Van Veldhuizen et al., 2003), and extends the 
model introduced in (Cabezas & Trujillo, 2011). 
It iteratively computes groups of SCA –A* sets– 
with comparable performance (i.e. not better, 
neither worst), according to scores of evaluation 
measures. Computed groups define a partition of 
the original set of SCA under evaluation. Among 
them, the A*1  group is of special interest since it is 
composed by the SCA of superior performance, 
under a specific evaluation scenario.

Interpret results: In a raking based model, 
a higher ranking is associated to a superior 
performance. However, some issues may arise 
in such model. For instance, two algorithms 
may have the same error scores but they will not 
obtain the same ranking.  Moreover, it is not clear 
when two rankings are close or distant enough 
to affirm that the performance of associated 
SCA may be considered as similar or different, 
respectively. In addition, in this model, the 
number of top-performer algorithms is a free 
parameter. In contrast, in the A* Groups model, 

the interpretation of results is defined, without 
ambiguity, based on the cardinality of the A* 
set and the group label assigned to it. In this 
way, researchers and practitioners may obtain an 
unambiguous feedback.

3.  An evaluation methodology

The methodology follows the steps illustrated 
in Figure 1. It offers the possibility of choosing 
different evaluation elements and methods, 
according to evaluation requirements. Moreover, 
it includes an extension to the Middlebury’s 
evaluation model by considering multiple error 
measures, and introduces a formalization of error 
criteria. 

3.1 Multiple error measures with different 
properties
  
The MAE, the MSE, the MRE and the SZE 
measures consider the disparity estimation error 
magnitude. In addition, the MRE and the SZE 
measures consider the inverse relation between 
depth and disparity. The use of multiple measures, 
with different properties makes an evaluation 
process less sensitive to the selection of error 
measure, since each one may capture a different 
aspect of the estimated maps. In this way, the 
possible weaknesses of a specific measure may 
be compensated by the strength of another one. 
Moreover, different measures can be used in 
a complementary way focusing on measuring 
specific aspects. 

3.2 An error criteria definition
 
An error criterion is conceived as a membership 
function defining a set partition of points (pixels) 
belonging to a disparity map. It identifies 
challenging image points associated to a specific 
and unique meaning. For the sake of completeness, 
required concepts are defined as follows.
Let I be a set of image points composing the 
reference view from a stereo image pair: 

(1)
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where T is the amount of points composing a 
reference image for which ground-truth disparity 
value is known. Let M be a set defined as: 

(2)

In addition, a set C of error criteria is considered. 
Let C be a set of onto-functions defined as:

(3)

where:
    
(4)

Thus, an error criterion ci is an onto-function with 
domain in I, and codomain in M:

(5)

where:
(6)

(7)

where P is a positive subset of  I, according to the 
onto-function ci, defined as:

(8)

Analogously, let N be a subset of I, according to 
the onto-function C, defined as:

(9)

Thus, an onto-function ci defines a partition over I, 
by fulfilling the following properties:

 (10)

  (11)

  (12)

  (13)

Let PCk be the positive set of the onto-function ck

 (14)

Subject to:
 (15)

(16)

(17)

(18)

(19)

Based on the above definition, three meaningful 
error criteria are identified as follows.

boundary: this criterion considers points near to 
both depth discontinuities and occluded regions. 
In this case the property of being near can be 
computed by a function using thresholds for 
determining a neighbourhood and what a depth 
discontinuity is. This criterion offers backward 
compatibility with the disc criterion used in 
the Middlebury’s methodology. interior: this 
criterion considers image points which are visible 
in both stereo images, and far enough from depth 
discontinuities and occluded regions. occluded: 
this criterion considers occluded points, which can 
be detected by forward projecting the reference 
view, or applying the bi-directional constraint on 
DGTD. 

In practice, each criterion can be represented and 
stored as a binary image mask. Figure 5 shows 
the image masks associated to the three proposed 
error criteria, using the Teddy stereo image. Figure 
5(a) illustrates the boundary criterion. Figure 5 
(b) illustrates the interior criterion, and Figure 
5 (c) illustrates the occluded criterion. Figure 
5(d) represents a generalisation of the introduced 
formalisation, applied to error criteria presented 
above, as disjoint sets which union compose the 
set of points to be evaluated in a disparity map. 
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Following the presented definition for evaluation 
criteria, the boundary, the interior and the 
occluded criteria are composed by different image 
points. The amount of disparity estimation errors 
with a deviation of more than 1 pixel from the real 
disparity value, associated to introduced criteria 
are shown in Table 1 using the Venus stereo image 
and a set of selected algorithms. Errors based on 
a criterion do not imply errors based on another 
criterion.

3.3 Extending the middlebury’s evaluation 
model

The Middlebury’s evaluation model is based 
on averaged rankings. It considers exclusively 
the BMP measure. The introduced extension 
incorporates multiple measures. It is described 
as follows. The conventional Middlebury’s 
evaluation model is applied, separately, for each 
selected error measure. Then, the final ranking 
of each SCA is computed by summing all the 
intermediate rankings, and sorting the sum. In 
this way, a discrete value is obtained as result. 
A τ threshold (with the number of considered 
error measures as suggested value), is used to 
determine if two algorithms show a similar 
performance, in the following way: if the absolute 
distance between the sum of rankings is less than 
τ, the performance of the two algorithms can be 
considered as similar. This criterion is applied 
to two algorithms under comparison. It defines a 
reflexive and symmetric relation. The extension 
provides robustness by considering multiple error 
measures. 

Figure 5. Illustration of the proposed error criteria using the Teddy stereo image, (a) boundary error criterion, (b) interior error 
criterion, (c) occluded error criterion, (d) generalisation of proposed error criteria, viewed as non-empty disjoints sets. 

3.4 An interactive evaluation process

The presented methodology considers several 
choices during the evaluation process, which 
are outlined as follows. Test-bed images can be 
selected, for instance, among the Tsukuba, the 
Venus, the Teddy, and the Cones stereo images 
(Scharstein & Szeliski, 2013). The evaluation 
criteria can be selected either among the 
introduced criteria (the boundary, the interior, 
and the occluded error criteria), or among the 
Middlebury criteria (the nonocc, the disc and the 
all criteria). Evaluation measures can be selected 
among available evaluation measures, such as: the 
BMP, the SZE, the MAE, the MSE, and the MRE, 
or a combination of them. Evaluated algorithms 
can be chosen from, for instance, the repository 
available at (Scharstein & Szeliski, 2013). The 
evaluation involves a set of algorithms, which 
can be selected algorithms according to user 
requirements in order to focus a comparison in 
SCA based on similar optimisation techniques. 
The evaluation model can be selected from the 
A* Groups model (Cabezas et al., 2012a), the 
Middlebury’s model (Scharstein & Szeliski, 
2002), or from its introduced extended version.

4. Experimental validation

The presented methodology offers multiple 
evaluation possibilities. Only two different 
evaluation scenarios are presented in order to 
illustrate versatility, due to some constraints in 
space. Both scenarios consider the full set of test-
bed images available at (Scharstein & Szeliski, 
2013). The first scenario is devised for comparing 

Ingeniería y Competitividad, Volumen 15, No. 2,  p. 151 - 161 (2013)



160

performance of SCA in regions visible in both 
images. It uses the boundary evaluation criterion, 
the full set of error measures presented in section 
3.4, the entire set of SCA, and the extended 
Middlebury’s evaluation model. The top-fifteen 
ranked algorithms under this evaluation scenario 
are shown in Table 2. In this case, the suggested 
value for the threshold τ is five, which is applied 
to the sum of rankings. Multiple observations can 
be extracted from obtained results. For instance, it 
can be observed that several algorithms belonging 
to variations of the semi-global approach 
(Hirschmuller, 2005) are present. Regarding 
the inclusion of multiple error measures, each 
measure can be seen as an expert, contributing in 
a multi-expert evaluation approach, reducing the 
impact of selecting a single measure. The second 
scenario is devised to find algorithms showing the 
best performance (in terms of 3D reconstruction 
accuracy, by considering the impact of disparity 
estimation errors) in areas near to depth 
discontinuities. It uses the occluded evaluation 
criterion, the MRE and the SZE measures, the 
entire set of SCA, and the A* Groups evaluation 
model, which, by definition, properly handles 
multiple evaluation measures. The members 
of the A*1  set are: WarpMat, SurfaceStereo, 

Unsupervised, AdaptingBP, Segm+visib, 
ObjectStereo, and AdaptingOverSegBP, 
CurveletSupWgt, and InteriorPtLP (Scharstein & 
Szeliski, 2013). Several of them use an approach 
based on segmentation, assigning disparity values 
to each segment. Eight groups of SCA are selected 
by the used evaluation model. The cardinality of 
each A* group is: |A*1 | = 9, |A*2    | = 24, |A*3  | = 23, 
|A*4 |= 14, |A*5   | = 9, |A*6 |= 11, |A*7 |= 8, |A*8 |= 7, 
and |A*9 |= 6 respectively. 

5. Conclusions

An interactive evaluation methodology for 
comparing SCA, considering the use of multiple 
error measures with different evaluation 
properties was presented. Taking this into account, 
an extension to the Middlebury’s evaluation 
model was introduced. Moreover, the presented 
methodology introduces a defintion of error 
criteria avoiding ambiguity during the gathering 
of score errors, along with an innovative criterion 
allowing the evaluation of disparity assignations 
in occluded regions. Error measures and error 
criteria are selected by a user, in order to obtain 
more reliable and useful evaluation results. In 
this way, users are allowed to define different 
evaluation scenarios, according to evaluation 
requirements. Thus the presented methodology 
provides state-of-the-art evaluation capabilities. 
Nevertheless, although the extension to the model 
introduces reliability to evaluation results, it may 
no alleviate the inherent issues of a ranking based 
model. Thus, the use of the A* Groups model, 
which is based on the Pareto dominance relation, 
arises as a proper alternative.
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