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Abstract
This work describes the necessary aspects for the programming of a robot through the paradigm of learning by 
demonstration and it proposes a system that keeps concordance with what is known about the functioning of 
biological systems. Four gestures performed by the arm of different human demonstrators were used in the imitation 
performed by a simulated arm. To achieve these gesture imitations, a Visual-Motor map was created which allows 
the robot to give its own interpretation of the observed gesture. The imitation performance was evaluated for its 
quality and quantity. New indicators are presented for the four gestures that make possible the imitation evaluation 
beyond the following of the trajectory usually performed in order to define the success of the imitation. The imitation 
was successful in 3 of the 4 gestures and scored an average of 62% for the poll and 78.6% for the indicators.

Keywords: Learning by demonstration, bio-inspired system, visual-motor map, metrics to evaluate imitation

Resumen
En este trabajo se describen los aspectos necesarios para programar un robot mediante el paradigma del aprendizaje 
por demostración y se propone un sistema que guarda concordancia con lo que se conoce del funcionamiento de 
sistemas biológicos. En la imitación se usaron específicamente cuatro gestos ejecutados por el brazo simulado 
de diferentes demostradores humanos. Para lograr la imitación de los gestos, se creó un Mapa Visuo-Motor que 
permite que el robot realice su propia interpretación del gesto observado. El desempeño de la imitación se evaluó 
de forma cuantitativa y cualitativa. Se presentan indicadores novedosos para los cuatro gestos que permiten evaluar 
la imitación, más allá del seguimiento de trayectorias realizado habitualmente para definir el éxito de la imitación. 
El éxito de la imitación fue bueno en el caso de 3 de los 4 gestos, lo que produjo una calificación promedio del 62% 
para las encuestas y de 78.6% para los indicadores.

Palabras clave: Aprendizaje por demostración, sistema bio-inpirado, mapa visuo-motor, métricas para evaluar la 
imitación.
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1. Introduction

A new way of interacting and/or programming 
robots has been explored in the last years. 
These new ways do not require for the user or 
programmer to have a high level of expertise 
that is mainly related with the knowledge about 
the robotic platform and the need to foresee all 
possible operating conditions the robot would 
face.

Humans (Meltzoff, 1999) and some animals 
(Galef, 1988) use imitation for learning, whether 
confronting an unknown environment or task or 
when they want to improve their performance. 
This strategy applied to robotics is known as 
“learning by demonstration” or “learning by 
imitation” and makes possible the programming 
of robots with the ability of learning complex 
behaviors and interacting intelligently with the 
environment.

An important characteristic of learning by 
demonstration is that it opens the possibility 
for the master (human or robot) to program 
simultaneously many types of robots that could 
be morphologically different from him, just as 
he performs the tasks that he wants the robots to 
learn.

In this work, the imitation is oriented to the 
performance of a task done by the simulated 
robot in the same way as it was observed without 
necessarily following the same arm trajectory of 
the demonstrator.

Numeral 2 describes the principles that were used 
for the creation of each of the blocks that constitute 
the system and the evaluation methodology. 
Numeral 3 presents the results and a discussion on 
them. Finally, numeral 4 exposes the conclusions.
Bakker and Kuniyoshi (1996) break downed a 
series of sub-problems that should be resolved 
in the steps involving imitation. These are: 
observation, recognition, and reproduction. 
The works done in learning by demonstration 

deal with sub-problems such as segmentation, 
the processing of relevant information that 
accompanies the demonstrated action and the 
selection of an appropriate representation for the 
actions. However, some of those problems such 
as the selection of an appropriate master, the 
automatic selection of the time for performing the 
learned action, and the quantitative evaluation of 
the imitation when is oriented towards reaching 
a goal and not as an exact copy of the actions 
performed by the demonstrator, are still unsolved. 
The present work deals with the last sub-problem. 
However, there is an aspect in robot programming 
by demonstration that was not included by  
(Bakker & Kuniyoshi, 1996) in the three steps 
above that is being investigated, it is that the 
robot will receive human feed-back to improve its 
performance (Grollman, Daniel & Billard, Aude, 
2012) (Grollman, Daniel & Billard, Aude, 2011) 
(Pastor, P. et al, 2011).

2. Methodology 

In order to conceive a simulated robot with 
the capacity to perform learned tasks from 
a demonstrator, the relevance of the visual 
information for gesture learning as perceived 
by the system and its relation with the motor 
actions done by the robotic arm was analyzed. 
This reaction results in the robot giving its own 
interpretation of the observed gesture which is 
validated by four gestures performed by the arms 
of different human demonstrators. These were: 
Gesture 1: rotating the arm counterclockwise 
back and forth as when saying “hello”, Gesture 
2: moving the hand up and down as fanning or 
calling somebody, Gesture 3: rotating the hand 
counterclockwise as when cleaning a surface, y, 
Gesture 4: Getting the hand near and away from 
the camera as to mean rejection and closeness. 

The first three gestures were used by (Kuniyoshi et 
al., 2003) to evaluate its gesture imitation system. 
These gestures only involved 2 of the 6 DOF. For 
this work the gesture 4 was added. This gesture 
involves all the available DOFs.
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140 videos were recorded with different 
demonstrators performing one of the four possible 
gestures, that is, 35 video interpretations for each 
gesture. From these, 48 (12 for each gesture) were 
used in the initial phase of training and 92 (23 for 
each gesture) for the validation of the system. The 
video recording conditions were not manipulated 
so that they could be constant. However, the 
extremely fast gesture performances, nocturnal 
recordings, and the covering of the object of 
interest (the hand) as others of similar color 
characteristics, were avoided. 

2.1 The imitation concept

Imitation is a concept that generates controversy 
even in fundamental and ancient sciences such 
as psychology. Different works in engineering 
have adopted a variety of achievements over 
what could be considered an imitation. However, 
in general terms, imitation implies observing, 
recognizing, and reproducing somebody else’s 
actions (Thorndike, 1988).

During the observation and recognition process, 
the imitator is concentrating in the most important 
aspects of demonstration and rejects details 
of little importance. This ability is especially 
important when the demonstrations, even those 
performed by the same demonstrator, present a 
high degree of variability in its executions.

On the other hand, in order to replicate a 
demonstration, it is necessary to have a certain 
way of measuring similarity between the observed 
actions and those the imitator could perform. 
This is known as correspondence problem and 
its difficulty could increase as the imitator and 
the demonstrator do not share the same physical 
characteristics, for example: arms of different 
length, different degrees of freedom, or different 
species. In any of these examples, imitating in 
exactly the same way is not always convenient, 
possible and/or necessary.

This is how fidelity or precision in the gesture 
reproduction could vary, and there is not a limit or 

absolute threshold that would define the success of 
the imitation except for the fact that whoever judges 
(the observer) the imitation could not associate 
the two executions. The association made by the 
observer between the demonstrator’s execution 
and that of the imitator could correspond to the 
following: actions, states, and/or goals. Action 
imitation could be valued for example when the 
imitator replicates the same gesture with the same 
hand used by the demonstrator (in a similar or 
exact manner); although it may be worth to ask 
if one considers it correct the execution done 
with the other hand. The imitation goal could be 
valued when the same final effect is achieved, for 
instance: moving an object (even with executions 
and/or the use of completely different tools).

All the considerations over the possible variations 
in what one can consider or not imitation, are the 
main difference between the definition that each 
one can give to the concept of imitation.

2.2 System description

The proposed system has been divided into 
three big blocks: observation, recognition, and 
imitation. It is clear that it is possible to develop 
each one of these blocks with deterministic 
algorithms; however, biological systems have 
evolved towards simple and robust solutions 
that make them worth the effort of imitation 
and of study. For the later, the vast majority of 
developments exposed in this work propend to 
keep concordance with what is known about the 
functioning of biological systems.

2.2.1 Observation block

Neuro-physiological studies on the visual 
information processes in the brain start with the 
following the trajectory that the information 
makes from the eyes, where the retina transforms 
the fluctuant patterns of light in patterns of 
neural activity. The recording of a video with a 
monocular camera imitates for a single eye this 
representation. However, this process is only the 
beginning of a great number of transformations 
that are made in our central nervous system.
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2.2.2 Recognition block

Biological vision systems are capable of extracting 
many types of information from the environment. 
Some could detect color or see parts of the 
infrared spectrum or detect changes in the polarity 
of light that passes through the atmosphere; others 
use various eyes to determine the information of 
depth. However, there is a type of information 
that is believed to be used for all biological vision 
systems: movement.

The path of movement process in the macaque’s 
brain is composed by four areas: the striated area 
(V1), the middle temporal area (MT) the medial 
superior temporal area (MST) and the 7th area 
(Bruce and Green, 1990). The neurons in the V1 
are activated from a particular movement direction 
and in at least 3 ranges of speed (Orban, Kennedy 
and Bullier, 1986). A high proportion of neurons 
in MT are activated in a similar way that those in 
VI while other proportion of neurons are selective 
in a particular angle between the direction of 
movement and the gradient of spatial speed (Treue 
and Andersen, 1996). Neurons in the MST area 
are activated by complex movement patterns such 
as: comprehension, expansion and rotation with 
receptive fields that cover the greatest part of the 
visual field (Graziano, Andersen, and Snowden, 
1994) (Duffy and Wurtz, 1997).

A computing algorithm that emulates these four 
areas is described in (Pomplun et al., 1997), it starts 
from the estimation of optic flow vectors. The 
optic flow was strictly described by (Nakayama 
and Loomis, 1974), it is defined as a field of speed 
in the plane of image, that describes the pixel 
movement. Although there are many techniques 
for the estimation of optic flow, the affine optic 
flow was selected so that, as its name indicates, 
it combines the optic flow restriction equation 
and the corresponding equations to the image 
formation model for the prospective projection or 
affinity model. Affine optical flow is determined 
by the θ values in Eq. 1. This technique was 
implemented as it is described by (Santos-Victor 
and Santini, 1996) and it is calculated on the pixels 

identified as belonging to the demonstrator’s 
hand. The affine optic flow performs a smoothing 
of the resulting vectors and it was the optic flow 
technique with major strength in its estimation 
for the case of an object with little texture such 
as a hand and under uncontrolled illumination 
conditions.

  	

where,

       [ ]yxoyxo uuuvvv=θ 		

The information of movement direction used by 
neurons V1 and MT is found in the angle of the 
optical flow vectors while the information about 
speed is found in the magnitude. Since each of 
these neurons are selected at different directions 
and speeds of movement, the information provided 
by the optic flow passes through Gaussian filters 
that emulate the neuron’s tuning taking into 
account that in the macaque’s brain the Receptive 
Fields (RFs) of the neurons in V1area are circular, 
are uniformly distributed in the visual field and 
have an approximate overlap of 20%; they were 
simulated calculating the mean of all points inside 
the fixed overlapped circles.
 
The selection of the type of movement made in 
the neurons MTS is achieved according to the 
movement angle observed related to the angle of 
the magnitude gradient, in that way, it is possible 
to identify between movements of expansion 
(0°), of contraction (180°), clockwise rotation 
(90°) and counterclockwise rotation (270°). 
Intermediate angles mean that the movement is a 
combination of two of the basic movements. On 
the other hand, a pure translation will produce a 
non-determination of this angle. It is important to 
note that this identification is too strong to changes 
in the point of view during the recordings. The 
response to a two-dimensional filter G(sk,θp), 
tuned to a speed sk  and a direction of movement 
θk is determined by the Eq. 3 in which Is and I0 are 
the RF’s responses to the optical flow magnitude 

(1)

(2)

[ Iy   xIy   yIy   Ix   xIx   yIx ] θ = -It 
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and to the angle respectively, and σs andσθ, are the 
standard deviation of the same.
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Figure 1 represents the complete set of 
neuronal responses for an octagon that rotates 
counterclockwise. The interior ring corresponds 
to the lower speed and it increases toward the 
exterior ring. The three squares in the right side 
of the horizontal correspond to a 0°angle that 
increases to 30° in a counterclockwise direction. 
It is appreciated in the figure that indeed the more 
brilliant images (neuronal response of greater 
value) correspond to the clockwise rotating 
movement (superior vertical images). The 
brightness of these images is related to the tuning 
speed of the neuron. 

this representation, the neuron responses will 
appear strongest depending on how recent a 
strong neuronal response has happened and on 
how long that response is kept (Nope, Caicedo 
& Loaiza, 2008). The memory used in the 
imitation was of 5 video segments. In order to 
reduce the dimensionality of 102x76x36 to 36 
and the redundancy of the MHI information, this 
is converted to a histogram that condenses the 
neuronal responses and is calculated according to 
Eq. 4.

           
∑=== ),,(1),( tsH

M
sh jijpik αα αα 	                                                         

Where M corresponds to the size of 
that is the MHI of the selective neuronal response 
to a velocity si and to an angle αj. The histograms 
are used as visual entries to be related to the 
articulate values of the robotic arm in the visual-
motor map.

2.2.3 Imitation block

Meltzof (1997) suggested the existence of an inner 
visual-motor map. However, the visual-motor map 
of a human at birth is incomplete due to, among 
other things, an imprecise knowledge of his/her 
body. A relevant aspect from the engineering 
perspective for the construction of an adaptive 
system is that children acquire the capacity of 
recognizing and repeating movements through the 
visual-motor mapping. Therefore, in our research 
framework, the central role of the macaque’s 
motor visual-mapping is to allow the robot relate 
a visual stimuli with the motor representations 
that produces it. This kind of representation have 
the advantage that it is adjusted to the own visual 
(system of visual acquisition) and motor (robot’s 
body) capacities of the robot.

A transformation such as the visual-motor map 
corresponds mathematically to a function that 
relates a set of variables (visual inputs) in others 
(motor outputs). Hence the problem of learning 
a sensory-motor map leads to the problem of 
function approximation (Koh & Meyer, 1991).

(3)

Figure 1. Complete set of neuronal responses to the 
counterclockwise rotation of an octagon.

The temporal information of the movement 
provided by the emulation of the areas involved 
in the movements previously described are 
integrated in time, it is made through the motion 
history image (MHI) proposed by (Bobick & 
Davis, 2001). The MHI is an image that records 
the neuronal responses during a period of time 
that depends on the programming memory. In 

(4)

),,( tsH pk αα
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The Generalized Regression Neural Networks 
(GRNN) belong to the radial based networks 
and constitute a powerful tool when it comes to 
learning the function dynamics as it is intended 
during the construction of a visual-motor map.
The visual-motor map was built through the 
generalized regression neural networks with a 
value of one in the smoothing parameter. Although 
for the “training” 48 of the 140 available videos 
were used, the number of examples is much 
greater according to the duration of the gesture 
performance. The “real” angular values of the 
articulations during the movements needed to 
obtain the visual-motor map during the training 
are described in (Nope, Loaiza & Caicedo, 2010).
Figure 2 shows an example of the demonstration 
performed by a human and the imitation performed 
by the simulated arm. The result of the imitation 
demonstrates that visuo-motor map can be used 
to perform novel gestures out of the trained ones.

2.3 Evaluation method

To evaluate the gesture imitation performed 
through the simulation of a simulated robotic 
arm, a quantitative and qualitative analysis was 
made. The first one accounts for the subjective 
character of the judgment of different observers 
and is obtained through a poll. The second 
involves metrics for each gesture that provide a 
percentage measure of the success of the imitation 
performance. 

2.3.1 Poll

To evaluate subjectively the gesture imitation 
performed through the simulation of the robotic 
arm, a two-question poll was made to a group of 
eight people: 4 of them who were familiar with 
computers and 4 who were practically not familiar 
with them.

Initially, the objective of the poll was explained 
to them, and the gestures to be evaluated were 
performed associating those with the following 
names: gesture 1: greeting; gesture 2: fanning; 
gesture 3: rotating; gesture 4: getting close and 
away. After that two videos with different visual/
performance perspectives were presented to the 
participants in the poll, and they were asked to 
identify the gesture. Among the response options, 
the option “other” was included to respond in case 
of not finding an appropriate association with any 
of the pre-established gestures. Subsequently, the 
demonstrator and the robot performance were 
presented to the participants simultaneously 
and they were asked: “Do you consider that 
the robot imitated the gesture performed by the 
demonstrator?” The possible answers are YES, 
NO. This process was repeated for each of the 92 
test videos, 23 for each gesture. 

2.3.2 Metrics

In spite of the subjective nature of the judgment 
on the imitation, quantitative measures were 
used to describe, in this case, the quality of the 
imitation. The metrics compare the demonstrator’s 
trajectory with those of the imitator (Thobbi, Anad Figure 2. Demonstration and imitation of a random gesture.
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& Sheng, Weihua, 2010) (Billard et al., 2004), 
or determining acceptable variance in execution 
and generalization over initial conditions and 
perturbations for deriving autonomous controllers 
from observations of human performance (Dong, 
S. & Williams, B, 2011). This is little appropriate 
when it is intended for the imitator to give his/her 
own interpretation.

Mataric and Pomplum (1998) suggested that 
people fixed their attention especially in the 
trajectory followed by the final effector for 
having the greatest quantity of information on 
the movement task. The exact definition of final 
effector depends on the task itself and could 
vary, for instance, it could be a finger, the whole 
hand, the arm, etc. In this case, a following of 
the middle finger trajectory was made and the 
percentile adjustment to certain geometric shapes 
of the trajectory was used as an indicator as 
follows: Gesture 1 (greeting) it is related with 
two parables (two way movements) where the 
dependent variable is the Y axes. Although the 
parables are different, they can coincide. Gesture 
2 (moving the hand up and down: fanning) It is 
related with two parables, but in this case the 
dependent variable is the X axes. Gesture 3 (rotate 
the hand) it is related with an ellipse. Gesture 4 
does not have a particular form in the trajectory 
of the final effector that it is observed during the 
different performances. In fact, it seems to vary 
much with little changes in the demonstrator’s 
orientation towards the camera. However, it was 
found that the change in time of the hand size 
could approximate to a Gaussian curve. 

The imitation is evaluated through this indicators 
allowing for the imitator to give his/her own 
interpretation of the gesture including variations 

in speed, differences in physical characteristics 
of between the demonstrator and the imitator, the 
distance between the camera and the demonstrator.

3. Results and discussion

3.1 Metrics results

Table1 presents the minimum and maximum 
values of the entire set of metrics used to validate 
each gesture, as well as the deviation standard 
and the average. The results obtained with the 
proposed metrics leads to the conclusion that 
good performances of the different gestures 
were generally obtained, since the shapes were 
approximate and hardly ever there was an 
adjustment percent of 100%, even when the 
real data obtained during the demonstrator’s 
performance was used. The best performances 
occurred as follows: Gesture 1 (86%); 2 (79.5%); 
4 (77.2%) and 3 (71.8%).

3.2 Poll results

The results of the polls on the identification of the 
gestures performed by the imitator were presented 
through a confusion matrix in Table 2. It is desired 
for the diagonal to have values of 100% and 0% 
outside it. Different values from 0% outside the 
diagonal are interpreted as a wrong identification 
of the gesture in row for the gesture in the column. 
The average successful in recognition was 60%. 
It is observed that the best identified gesture was 
gesture 3 followed by 2 and 1. On the other hand, 
the worst identified gesture was 4 and the majority 
of times were associated with the option “other”.
The results of the second question (Do you think 
that the robot imitated the gesture performed by 
the demonstrator?) subsequent to the visualization 
of the gestures performed by the demonstrator 

Table 1. Statistical results obtained for the four metrics for each of the 23 gesture executions.

Gesture Average Standard deviation Maximum Minimum
Gesture 1 – greeting 86.0 9.6 100 62

Gesture 2 – fanning 79.5 12.4 100 58.1

Gesture 3 – rotating 71.8 15.5 98.0 41.2

Gesture 4 – getting close/away 77.2 17.1 100 47.4
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and the imitator are summarized in Table 3. The 
participants considered that there was a good 
imitation in the case of gesture 3 (rotating), 
2 (fanning) and 1 (greeting) with average 
percentage superior to 75%. It means than the 
average percentage reached in the first part of the 
poll was increased in 13%.

This result indicated a possible difficulty with 
the visualization that is used to show to the 
participants the imitation performance which 
uses “sticks” as approximation to the robotic 
arm. By the other hand, in an image is lost part 
of depth perception which is especially important 
to identify the motion performed in gesture 4. 
Because of that, after few days the participants 
were asked the same questions on the 20 videos 
randomly selected out of the 92 initial ones that 
included the most deficient gesture imitations. In 
this manner, it is assumed through the first poll 
that the observer is used to the visualization.

The participants tended to improve the gesture 
average identification percentage (from 62% to 
68.8%). This improvement was remarkable in 6 
of the 8 cases and only for participants 2 and 6 the 
identification worsen. However, it must be taken 
into account that the random selection of the twenty 
videos did not guaranty that the same number of 
performances of the same gesture was employed, 

and the majority of participants evaluated the 
worse performances in the second poll. Therefore 
it can be concluded that the evaluation was done 
in a highly pessimistic scenario.

Summarizing, it is observed that if metrics are 
used, the best imitation is for gesture 1, while 
with the poll this gesture comes in third place. 
Gesture 2 occupies the second place in both 
analysis cases. Although gesture 3 obtained the 
worst score in the metrics evaluation, the poll 
participants considered that gesture 3 was the best 
executed during the imitation by the robot. This 
probably happens because for the participants, 
a good imitation of gesture 3 includes the most 
varied range of trajectories than that of a rigorous 
ellipse. The opposite occurs with gesture 4 that 
based on the 4th indicator seem to have a good 
performance, however, it was subjectively given 
a very deficient score (44.02%). That indicates 
that there is a better correspondence between 
the metric results for gestures 1, 2 and 3 with the 
results of the first poll.

In scientific literature, the work that keeps greater 
similarity with the one exposed in this document 
corresponds to the one done by Kuniyoshi 
et al. (2003) in which 3 of the 4 gestures were 
used in the system evaluation are employed and 
it is also bio-inspired. However in the system 

Table 2. Average confusion matrix in the recognition of imitation.

Identified Gesture

Gesture 1 Gesture 2 Gesture 3 Gesture 4 Unidentified 
gesture

E
xe

cu
te

d 

ge
st

ur
e

Gesture 1 62,0 17,9 1,6 14,1 4,4
Gesture 2 18,5 63,0 1,6 11,4 5,4
Gesture 3 7,6 1,6 83,2 3,3 4,4
Gesture 4 8,7 4,4 7,1 39,7 40,2

Table 3. Statistics of the results for the second question of the poll.

Average Standard Deviation Maximum Minimum

Gesture 1 – greeting 75,0 21.4 91,3 30,4

Gesture  2 – fanning 79,4 13,5 100 65,2
Gesture  3 – rotating 88,0 8,3 100 78,3

Gesture  4 – getting closer/away 44,0 33,9 82,6 4,4
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proposed here includes the emulations of the most 
involved areas of movement perception which 
makes possible to identify the types of movement 
(expansions, squeezes, or rotations) including 
the direction and the speed of such movements. 
The imitations performed are improved compared 
with the mentioned work in the sense that the 
robot gives its own interpretation and it does not 
reproduce any pre-established execution.

On the other hand, in this work it was achieved 
the imitation of a gesture such as getting the hand 
closer and away which implies the movement 
of all the robotic arm articulations at the same 
time. Similarly, the focus of the visual-motor 
map makes possible for the learned movements 
to be employed during the imitation of unknown 
gestures which is impossible to achieve through 
the work proposed by Kuniyoshi and his 
colleagues. 

Finally, the evaluation on the success of the 
imitation was improved as the robot performances 
were scored for quality and quantity. In the last 
evaluation it was presented a set of indicators 
that take into account the goal to be achieved and 
intent to reject in a lesser or greater degree the 
irrelevant details of the performance. 

4. Conclusions

It was presented a system that uses the paradigm of 
learning by demonstration for a robot to learn how 
to imitate a set of gestures through the computing 
algorithms that integrate aspects of neuro-
sciences, neuro-physiology and psychology.

The visual-motor map makes possible for the 
initially learned movements to be employed 
during the imitation of unknown gestures which 
is impossible to achieve through the previous 
work done by Kuniyoshi and his colleagues. 
Furthermore, it was achieved the imitation of a 
gesture such as getting the hand closer and away 
which implies the movement of all the robotic arm 
articulations at the same time. The visual entries 
present non-variation at scale.

In order to evaluate the imitation produced by 
the system, it was proposed a qualitative and 
quantitative evaluation. The first one was made 
through the use of polls and it explores the role 
of the observer who determines in a subjective 
manner if he/she finds an association between the 
observed action and the action imitated by the 
robot. The second determines the percentage of 
similarity or the success in the imitation based on 
the geometric shape of the trajectory followed by 
the final effector.

The simultaneous analysis of the results obtained 
through the metrics and the poll indicates a 
good imitation of gesture 1 (greeting); gesture 
2 (fanning); and gesture 3 (rotating). Gesture 4 
(getting the hand closer and away) obtained a good 
score according to the indicator, but it obtained 
a poor score according to the poll participants 
(44%). There are many reasons for these results. 
The first one is that this is a gesture for which 
depth information is important and this is lost due 
to the visualization used. The second one is that 
during the making of the visual-motor map there 
are less examples if one is to take into account 
the number of articulations that intervene in the 
gesture.

According to the results, the percentage for 
imitation seems to be promising in the programming 
of robots that could have physical differences 
with the demonstrator; the programming of many 
robots simultaneously while a task that is going 
to be taught is performed; and the possibility 
of reusing the early motor skills learned for the 
performance of unknown gestures. However 
the developments made in this area up until 
now, correspond to relatively simple tasks. The 
limitations of the proposed system are not related 
with the principles of learning by imitation, but 
with the selected algorithms own limitations.
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