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Abstract. 
In this paper, a new method for remote protein homology detection called remote-3DP, is presented. The remote-3DP 
method is based on both predicted 3D information and physiochemical properties of amino acids. The remote-3DP 
method considers only 10 structural models to represent a protein and to distinguish between remote homologues 
and non-remote homologues in 54 SCOP families. The low dimensionality of the protein representation allows us to 

show that including a physicochemical property along with predicted 3D information into a local structural element, 
actually improves the accuracy in remote homology detection. The highest ROC score for a set of models that 
includes 3D information and the Hydropathy index reaches 0.953 on the SCOP 1.53 dataset. In addition, a model 
that ensembles the outputs of 10 physicochemical properties is built to make a consensus decision. The consensus 
strategy reaches a ROC score of 0.963 on the SCOP 1.53 dataset, surpassing the current methods based on sequence 
composition which accuracy range from 0.87 to 0.92. 

models.

Resumen
En este artículo se presenta un nuevo método para la detección de homología remota llamado remote-3DP. El 

aminoácidos. El método considera tan sólo 10 modelos estructurales para representar una proteína y distinguir los 
homólogos remotos de los no remotos en 54 familias SCOP. La baja dimensionalidad de la representación permite 

hecho mejora la exactitud de la detección de homología remota. El puntaje ROC para un conjunto de modelos que 
incluye el índice de hidropatía alcanza un puntaje de 0. 953 para el conjunto de datos SCOP 1.53. Además, se propone 
un modelo de ensamble que utiliza las salidas obtenidas para las 10 propiedades y así tomar una decisión consenso. 
La estrategia consenso alcanza un puntaje ROC de 0.963 sobre el conjunto de datos SCOP 1.53, sobrepasando los 
métodos actuales basados en la composición de la secuencia cuya exactitud varía de 0.87 a 0.92. 

https://doi.org/10.25100/iyc.v17i1.2202



76

Ingeniería y Competitividad, Volumen 17, No. 1, p. 75 - 84 (2015)

1. Introduction

Remote homology detection problem is about 
identifying proteins that are functionally and 
structurally related but at the same time do not 
share sequence similarity.  The problem can be 
defined using the SCOP hierarchy. Considering 
the four levels of the SCOP hierarchy (i.e., 
class, fold, superfamily and family), the remote 
homologs of a protein P in family F are proteins 
in the same superfamily of P that do not belong 
to F. According to the definition of a SCOP 
superfamily, the remote homologs of P are 
proteins that have a common ancestor and thus 
they still share function and structure. However, 
remote homologs of P belong to a family different 
from F, which implies that P and its remote 
homologs do not share sequence similarity. 
According to Vendruscolo & Dobson (2005) and 
Muda et al. (2011), finding remote homologs for a 
target protein P is considered a fundamental step 
in biomedical applications such as drug discovery, 
where proteins that share common functions given 
a specific protein sequence have to be identified.

Several methods have been proposed to determine 
remote homology, such as SVM-I-sites by Hou 
et al. (2003), SVM-RQA by Yang et al. (2008), 
SVM-PCD by Webb-Robertson et al. (2010), 
BioSVM-2L by Muda et al. (2011), and SVM-
PDT by Liu et al. (2012). Some of the most recent 
works are sequence composition-based methods, 
which are based on using subsequences, motifs 
or word similarity from protein sequences to 
extract features that help discriminating protein 
families. The ROC score (Receiver Operating 
Characteristic) of these methods ranges from 
0.87 to 0.92. There are sequence composition-
based methods that incorporate physicochemical 
properties of amino acids. The SVM-PDT method 
proposed by Liu et al. (2012) considers the 
distance between the physicochemical values of 
two amino acids separated by residues along the 
protein chain. Liu et al. (2012) uses eight values, 
which means eight separation values starting with 
the distance between a residue ri and ri+1 until ri 
and ri+8. The eight values are calculated using a 
single physicochemical property. SVM-PDT 
considers 531 physicochemical properties. Thus, 

a total of 531·8=4248 values are calculated in the 
vector representation. 

In this paper, we propose a new method that uses 
models based on both predicted 3D information 
and physicochemical properties of amino 
acids. Different sets of models are presented, 
each collection of models uses a specific 
physicochemical property. In addition, a model 
that ensembles the outputs of the individual 
collections is built to make a consensus decision. 
In the following section every step in the remote-
3DP method is explained in detail. In Section 
3, the results are given considering the SCOP 
1.53 benchmark. Finally, the conclusions of the 
research are presented in Section 4.

2. Methodology

The remote-3DP method (3D enriched with 
physicochemical properties) is divided in 
three steps. First, 3D models that incorporate 
physicochemical properties are obtained; 
different collections of models are presented. 
Then, the models are used to represent every 
protein in the dataset and a classifier is built for 
each SCOP family. Finally, a consensus model is 
built to improve the accuracy of remote homology 
detection. 

2.1 Obtaining the models

The first step in the remote-3DP method is obtaining 
models from the 3D predicted information and the 
physicochemical properties of amino acids. Given 
an amino acid sequence, the 3D information (i.e., 
contact map) is predicted using the NNcon 1.0 
program proposed by Cheng et al. (2009). The 
NNcon1.0 uses a neural network to predict the 
general contact map and another neural network 
to predict the beta-sheet contacts. The NNcon1.0 
is available at http://sysbio.rnet.missouri.edu/
multicom_toolbox/tools.html. A contact map is 
a matrix obtained by binarily discretizing each 
value in the distance matrix (i.e., 1: contact, 0: non-
contact). A distance matrix of a protein is a square 
matrix containing the Euclidean distances between 
all pairs of Cα atoms in the protein. In this research, 
we assume that two residues are in contact if the 
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Euclidean distance between the corresponding Cα 
atoms is less o equals to 8.0 Angstroms. 

We also included physicochemical properties in the 
process of obtaining the models that will be used 
in remote homology detection. Every amino acid 
index contains 20 values representing a particular 
physical o biochemical property of amino acids. 
According to Yang et al. (2008), the hypothesis 
behind incorporating physicochemical properties 
into the definition of models in remote homology 
detection is that because protein structure and 
function are conserved during evolution, the 
similarity between two distantly related proteins 
may lie in the physicochemical properties of the 
amino acids rather than the sequence identities. In 
this paper, the physicochemical properties are used 
to represent the interactions between every pair of 
amino acids in a protein. We define an interaction 
matrix Ip as a square matrix that holds the additions 
between the values of the physicochemical property 
p for each pair of amino acids. First, the 20 values 
of each physicochemical property have to be scaled 
to a range of values that make them comparable to 
the values in the contact maps. We chose to scale 
every value of each physicochemical property 
to the range [1,1.5] considering the values in the 
contact map (i.e., 1 and 0). Then, every position 
(i,j) in the matrix IP is calculated as the addition 
between the values of the physicochemical property 
p for residues at positions i and j. Figure 1(a) shows 
the distance matrix for domain d1ceqa1; the bar 
scale shows the distance in Angstroms. Figure 1(b) 
shows the contact map for the same domain; the 
contacts (i.e., Cα atoms whose distance is less o 

equals to 8.0 Angstroms) are shown in black and 
non-contacts are shown in gray, and Figure 1(c) 
shows the corresponding interaction matrix Ip  
when the Hydrophobicity index is considered.

A collection of structural models that incorporates 
3D information (i.e., common 10x10 submatrices 
in the contact maps) along with physicochemical 
properties (i.e., the corresponding 10x10 
submatrices in the interaction matrix) are used 
in the remote-3DP method. The models are 
extracted from a training dataset of 40 proteins 
selected from the SCOP 1.55. The proteins were 
selected by taking two proteins for each of the 20 
SCOP superfamilies in the dataset. Obtaining the 
structural models starts by calculating a contact 
map for each protein in the training dataset (i.e., by 
using the NNcon1.0 program). Then, submatrices 
of 10x10 are extracted from the contact map as 
local structural features. The size of the submatrix 
was taken just as Choi et al. (2004) who tried 
submatrices from 8x8 up to 16x16 and found that 
size 10x10 allow to capture 3D interactions that 
occur in the distance matrix. In addition, 10x10 
submatrices are also extracted from the interaction 
matrix to create a local structural element (LSE) 
formed by 200 values. Each local structural 
element includes both 3D structure and values 
from a given physicochemical property. After 
having a collection of local structural elements, 
the clustering algorithm CLARA (Clustering Large 
Applications) was used to obtain the representative 
LSEs (i.e., resulting medoids after clustering 
algorithm) that are taken as structural models in the 
remote-3DP method. 

Figure 1. Distance matrix, contact map, and interaction 
matrix for domain d1ceqa1
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The CLARA algorithm is a clustering strategy 
that starts by taking a sample from the dataset and 
then uses the PAM algorithm (Partitioning around 
medoids). Using a sampling strategy allows the 
CLARA algorithm handling large datasets. In 
this research, we used the implementation of the 
CLARA algorithm available in the R language 
(http://www.r-project.org/). It is expected that the 
local structural elements taken as models after the 
clustering algorithm are commonly and frequently 
used in several proteins. Following the methodology 
proposed by Choi et al. (2004), each protein in 
training is first clustered into 50 representative 
LSEs, and then the obtained medoids are clustered 
again to obtain a final set of k models. This allows 
having a reasonable amount of submatrices in the 
clustering process. In this paper, we used k=10 to 
obtain the final number of models. Figure 2 shows 
the process of obtaining 10 structural models from 
the amino acid sequences.

Each interaction matrix uses only one 
physicochemical property. In this paper, we propose 
to use 10 different physicochemical properties 
to analyze their effect in the process of obtaining 

the models. We selected the 10 physicochemical 
properties related in the state of the art that have shown 
the strongest relationship with the three-dimensional 
structure of proteins. According to Grigoriev & Kim 
(1999), the three-dimensional structure of a protein is 
determined by the physicochemical properties of its 
residues and we pretend to discover if including the 
physicochemical properties in the model definition 
has an impact in remote homology detection. The 10 
selected physicochemical properties are: Hydropathy 
index, Polarity, Normalized van der Waals volume, 
Atom-based hydrophobic moment, The Kerr-
constant increments, Spin-spin coupling constants 
3JHalpha-NH, The Chou-Fasman parameter of the 
coil conformation, Alpha-helix propensity derived 
from designed sequences, Relative preference value 
at C’, and pK (-COOH)

Figure 3 shows the 10 models that are obtained when 
the physicochemical property Hydropathy is used in 
the interaction matrix; we call this set of models the 
Hydropathy collection. Every model reflects local 
structural interactions. m1, m2, and m6 represent 
different positions of a beta sheet. m3 is the outer 
part (right) of a helix. m4 represents the non-contacts 

Figure 2. Obtaining 10 structural models
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between residues and it is the most frequent model 
in any protein.  m5 is common model in the diagonal 
of a helix. m7 is a model that can occur in both helix 
and beta sheet. m8 is the outer part (left) of a helix.  
m9 and  m10 represent the anti-parallel beta-sheets. A 
total of 10 different collections of structural models 
were obtained. Each collection uses one of the 10 
selected physicochemical properties. 

2.2 Building a classifier for each SCOP family

We define a count vector of a protein as the set 
of values indicating the times that each structural 
model is identified in the local structural elements 
of a protein. The size of the count vector is 10 
because we decided to keep that number of models 
and vary the physicochemical properties. The 
count vector is obtained from the predicted contact 
map and the interaction matrix; both of them are 
calculated from the primary sequence. 

Given a predicted contact map (PCM) of size nxn, 
overlapping submatrices of 10x10 are extracted. At 
the same time overlapping submatrices of 10x10 are 
extracted from the interaction matrix Ip. Each local 
structural element has 200 values, 100 values from 
the 10x10 submatrix of the PCM and 100 values 
from the 10x10 submatrix of the interaction matrix. 
Each local structural element Sj in a protein is 
assigned to the closest model mi in a given collection 
by using a combination of the normalized Hamming 
distance and the Euclidean distance. First, the 
normalized Hamming distance is used to compare 
the submatrices from the predicted contact map to 
the 3D information in the models. The Hamming 
distance is used because each submatrix in the contact 
map is a set of discretized values that describes a 
particular shape of 3D local structural interactions 
and thus the Hamming distance captures the model’s 
similarity. Figure 4 shows the Hamming distance 
between a submatrix Sj and the 3D information of 

Figure 3. 10 models in the Hydropathy collection
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the models in the collection. Then, the Euclidean 
distance is used to compare the submatrices from the 
interaction matrix to the physicochemical properties 
values that are part of the models. A different metric 
is used because submatrices from the interaction 
matrix are composed by real numbers instead of the 
discretized values in the predicted contact map. As 
might be expected, different decisions can be taken 
when the closest model is calculated for a structural 
element Sj using the contact map and the interaction 
matrix information even for the same local structural 
element. Thus, the final decision about the closest 
model of a local structural element Sj is taken by 
normalizing the Hamming and Euclidean distances, 
and then adding the two values. 

After calculating the count vector for each 
protein in the dataset, a normalized count vector 
(NCV) is obtained. The normalization assures 
that every value in the count vector contributes 
equally. The normalized count vector of the 
k-th protein in a dataset is represented as the 
vector NCVk=[Ak1,Ak2,…,AkM], where Akm is the 
normalized count value for the m-th model in the 
k-th protein and is defined in Eq. (1).

                                                      
 (1)   

          
                                                                   
                
where f(k,m) is the m-th value in the count vector 
of the k-th protein and Q is the number of proteins 
in the dataset. The normalized count vector of the 
k-th protein is the vector NCVk and contains the 
normalized counts of the overlapping predicted 
submatrices. 

Once the normalized count vector is calculated 
for each protein in the dataset, we propose to use 
different classification techniques to distinguish 
remote homologs from non-remote homologs in a 
given SCOP family. In remote homology detection 
a classifier is trained for each SCOP family. For 
each family, the proteins within the family are 
taken as the positive testing set while proteins 
outside the family but within the same superfamily 
are considered as the positive training set. Negative 
examples are taken from proteins outside the 
family’s fold. For instance, when a classifier is 
built for SCOP family b.1.1.1, proteins in families 
b.1.1.2, b.1.1.3, b.1.1.4, and b.1.1.5 are taken as 

Figure 4. Hamming distance between Sj and the 3D information of the Hydropathy collection
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the positive training dataset because they belong 
to the superfamily b.1.1. Proteins in family b.1.1.1 
are used as the positive test set. Finally, proteins 
outside the fold b.1 are taken as negative examples. 
We propose to use the classifiers in the WEKA data 
mining software developed by Hall et al. (2009) 
to identify remote homologs for each family. The 
WEKA program (http://www.cs.waikato.ac.nz/ml/
weka/) has several classification techniques that 
can be applied when a classifier is built for each 
SCOP family. There are at least 30 classification 
algorithms including different strategies such as 
Bayes, Functions, Miscellaneous, and Decision 
trees methods. In this paper, remote homology 
detection is performed by selecting a classifier for 
each SCOP family using 5-fold cross validation on 
the training dataset. In the 5-fold cross validation 
strategy the training set is divided in five parts. One 
part is used as the validation data and the remaining 
k-1 parts are used as training data. The process is 
repeated five times.

2.3 Consensus strategy in remote homology 
detection

A total of 10 collections of models were considered. 
Each collection uses a different physicochemical 
property. In this paper, a consensus model is built 
to make a better decision that ensemble the outputs 
of the 10 collections. The classifier built for each 
SCOP family produces not only a class label 
indicating whether a target protein is remote to 
the family or not, but also a score. The score is a 
numerical value produced by the classifier and it 
ranges from 0.0 to 1.0. The closer to 1.0 the score, 
the bigger the probability of getting a +1 class label 
(i.e., remote to the family), and the closer to 0.0 
the score, the bigger the probability of getting a 
-1 class label (i.e., non-remote to the family). We 
propose to build a model that takes the scores from 
the 10 classifiers (i.e., one from each collection) 
and produces a consensus decision. Obtaining a 
consensus decision for a given protein P during 
testing starts by calculating 10 scores from the 10 
classifiers (i.e., each classifier is based on a different 
physicochemical property). Then, the scores are 
given to the consensus model, which produces a 
final decision. An important step when a consensus 
strategy is built is about training the consensus 

model. The consensus model was trained with the 
scores of the 10 classifiers using 5-cross validation 
technique on the training dataset. In that way, the 
testing dataset was kept unseen during the training 
of the consensus model. 

3. Results and discussion

In this section, the results of the experiments are 
shown. A comparison with some of the current 
methods is shown.

3.1 Measuring the accuracy 

In this paper, the ROC score (receiver operating 
characteristic) is used to measure the accuracy of 
the remote-3DP method. The ROC score is the 
normalized area under the curve, which exhibits 
the relationship between true positives and false 
positives for different classification thresholds. 

3.2 Selecting the dataset 

In this paper the ASTRAL SCOP database 1.53 is 
used for testing. The SCOP 1.53 has been used as 
a standard for remote homology detection. A total 
of 54 families and 4352 sequences are considered. 

3.3. Evaluating the remote-3DP method

Table 1 shows the mean ROC score over the 54 
families when each of the 10 collections of models 
is used. The Hydropathy collection is the most 
accurate collection with a ROC score of 0.953. In 
addition, we found that each SCOP family has a 
classifier that separates better remote homologs 
from non-remote homologs. Table 2 shows the 
best classifier for each of the 54 SCOP families 
when the Hydropathy collection is used.

3.3.1 Evaluating the effect of incorporating 
physicochemical properties

A key aspect about incorporating physiochemical 
properties in the definition of models was 
to discover if it helps to obtain models that 
discriminate remote homologues better. We 
compare the collections of models that use 3D 
information and physicochemical properties with 
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Physicochemical property ROC score

Hydropathy index 0.953000

Polarity 0.935388

Atom-based hydrophobic moment 0.937907

pK (-COOH) 0.946796

The Kerr-constant increments 0.945592

Spin-spin coupling constants 3JHalpha-NH 0.943203

The Chou-Fasman parameter of the coil conformation 0.944518

Alpha-helix propensity derived from designed sequences 0.952870

Relative preference value at C’ 0.952611

Normalized van der Waals volume 0.947444

Table 1. ROC score when each of the 10 collections of models is used

ID ROC 
score

Best classification 
technique ID ROC score Best classification 

technique
1.27.1.1 0.998 LADTree 2.9.1.4 0.976 LADTree
1.27.1.2 0.991 Naïve Bayes 3.1.8.1 0.994 Logistic
1.36.1.2 0.968 VFI 3.1.8.3 0.992 RBFNetwork
1.36.1.5 0.977 Rotation forest 3.2.1.2 0.960 Classification via regression
1.4.1.1 0.989 AdaboostM1 3.2.1.3 1.000 BayesNetwork
1.4.1.2 0.940 ADTree 3.2.1.4 1.000 BayesNetwork
1.4.1.3 0.999 RBFNetwork 3.2.1.5 1.000 Logistic
1.41.1.2 0.998 Naïve Bayes 3.2.1.6 1.000 BayesNetwork
1.41.1.5 0.956 Multilayer perceptron 3.2.1.7 1.000 BayesNetwork
1.45.1.2 0.932 Rotation forest 3.3.1.2 0.942 Classification via regression
2.1.1.1 0.992 LogitBoost 3.3.1.5 0.691 HyperPipes
2.1.1.2 0.996 Naïve Bayes 3.32.1.1 1.000 Naïve Bayes
2.1.1.3 0.996 ADTree 3.32.1.11 1.000 Naïve Bayes
2.1.1.4 0.988 LADTree 3.32.1.13 1.000 Logistic
2.1.1.5 0.957 ADTree 3.32.1.8 0.968 Multilayer perceptron
2.28.1.1 0.845 Naïve Bayes Multinomial 3.42.1.1 0.987 Naïve Bayes
2.28.1.3 0.998 Naïve Bayes Multinomial 3.42.1.5 0.881 Logistic
2.38.4.1 0.995 Naïve Bayes Multinomial 3.42.1.8 0.977 Rotation forest
2.38.4.3 0.913 Random subspace 7.3.10.1 0.974 HyperPipes
2.38.4.5 0.969 LADTree 7.3.5.2 0.879 LADTree
2.44.1.2 0.844 Naïve Bayes Multinomial 7.3.6.1 0.913 VFI
2.5.1.1 0.908 Multilayer perceptron 7.3.6.2 0.906 RBFNetwork
2.5.1.3 0.934 Naïve Bayes Multinomial 7.3.6.4 0.936 Classification via regression
2.52.1.2 0.909 Classification via regression 7.39.1.2 0.939 VFI
2.56.1.2 0.998 AdaboostM1 7.39.1.3 0.822 Bagging
2.9.1.2 0.930 Multilayer perceptron 7.41.5.1 0.842 Naïve Bayes
2.9.1.3 1.000 BayesNetwork 7.41.5.2 0.963 Random subspace

Table 2. ROC score for each family when the Hydropathy collection is used
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models that only use 3D information. Obtaining 
models based on 3D information is done by using 
only the discretized submatrices of 10x10 from 
the contact maps. The mean ROC score when 
the 3D collection is used reaches 0.941574074, 
which only surpasses the Polarity and Atom-based 
hydrophobic moment collections with 0.935388 
and 0.937907, respectively. Eight out of the 10 
collections used in this paper reach a higher mean 
ROC score than the 3D collection. The results 
show that including physiochemical properties 
can actually improve the quality of the models in 
remote homology detection.
 
3.3.2 Evaluating the consensus model

The consensus model was built using three classifiers: 
Bayesnet, NaiveBayes, and VFI (Classification by 
voting feature intervals). We found that each SCOP 
family has a classification technique that should be 
used as its consensus model. Using the consensus 
model, a mean ROC score of 0.962926 is obtained. 
The ROC score of the consensus model surpasses 
even the highest individual collection of models. 
There are collections of models that work better 
for some families and according to the results the 
consensus model is actually able to recognize that 
pattern and produce a better classification decision 
for each family.

3.3.3 Comparison with recent discriminative 
methods

We compared the remote-3DP method with some 
of the most recent discriminative strategies, such 
as SVM-RQA by Yang et al. (2008), SVM-PCD by 
Webb-Robertson et al. (2010), SVM-PDT by Liu 
et al. (2012), SVM-WCM by Lingner & Meinicke 
(2008), and SVM-LA by Saigo et al. (2004), which 
ROC scores are 0.912, 0.906, 0.916, 0.904, 0.925, 
respectively. The remote-3DP was tested on the 
SCOP 1.53 dataset, which is the same dataset 
used in the current methods. When the remote-
3DP method uses the Hydropathy collection, 
it reaches the highest accuracy for a remote 
homology detection method based on the sequence 
composition (i.e., 0.953). The main differences 
between the remote-3DP method and the existing 
strategies are: the low dimensionality of the vector 

representation (i.e., only 10 values), incorporating 
3D and physicochemical properties in the structural 
elements, and using a consensus strategy. 
 
4. Conclusions

In this paper, we proposed a new method that 
uses models based on both 3D information and 
physicochemical properties of amino acids. The 
remote-3DP method considers only 10 structural 
models to represent a protein and distinguish between 
remote homologues and non-remote homologues 
in 54 SCOP families. The low dimensionality of 
the protein representation allows us to use different 
classification techniques and discover which one 
works better for each SCOP family. We found that 
including a physicochemical property along with 
3D information in a local structural element, actually 
improves the accuracy in remote homology detection. 

In addition, a model that ensembles the outputs 
of the 10 collections is built to make a consensus 
decision. The numerical score of each collection is 
used to feed a consensus model that is able to identify 
which physicochemical property works better for 
the proteins into a SCOP family. The consensus 
model reaches a ROC score of 0.963. Both the 
remote-3DP with the Hydropathy collection and 
remote-3DP with the consensus model surpass the 
current methods in remote homology detection 
based on sequence composition. Different 
physicochemical properties might be tested on 
the remote-3DP method. We selected just some of 
the physicochemical properties that have shown a 
high relationship to the 3D structure of the protein. 
Considering that there are 544 physicochemical 
properties in the AAindex, several more 
indices could be tested. It is expected that some 
physicochemical properties work better for some 
families, and thus, the consensus strategy that takes 
the outcomes of more collections of models might 
reach an even higher accuracy. 
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