
168

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

TELECOMMUNICATIONS ENGINEERING

NS3-based training system for learning
RIPng for IPv6

INGENIERÍA DE TELECOMUNICACIONES

Sistema didáctico basado en NS-3 para el
aprendizaje de RIPng para IPv6

Oscar Polanco Sarmiento*

*Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle. Cali, Colombia.
 oscar.polanco@correounivalle.edu.co

(Recibido: Febrero 02 de 2016 - Aceptado: Abril 28 de 2016)

Abstract
This article shows the implementation of simulation software which aims to facilitate learning the RIPng
protocol (for IPv6). This is based on an IPv6 network with loop topology, on which it is possible to
program the tear down moment for one of the least-cost links; said link has been previously used in the
routing table calculations which were operating before the tear down. Simulation includes three options
which allow the user to choose the control strategy which helps avoiding routing loops: PoisonReverse,
SplitHorizon and NoSplitHorizon. The software was developed under the programming environment of
the NS-3 network simulator.

Keywords: ICMPv6, NS-3 Network Simulator, RIPng for IPv6, Split Horizon strategy.

Resumen
En este artículo, se presenta la implementación de un programa de simulación mediante el cual se busca
facilitar el aprendizaje del protocolo RIPng (para IPv6). Este se basa en una red IPv6 con topología en bucle,
sobre la cual, se puede programar el instante de falla de uno de los enlaces de menor costo; dicho enlace a su
vez ha sido utilizado previamente en el cálculo de la tabla de enrutamiento que se encontraba en operación
antes de la falla. La simulación incluye tres opciones que le permiten al usuario seleccionar la estrategia de
control que ayuda a evitar los bucles de enrutamiento: PoisonReverse, SplitHorizon y NoSplitHorizon. El
programa fue desarrollado bajo el entorno de programación del simulador de red NS-3.

Palabras clave: Estrategia Split Horizon, ICMPv6, RIPng para IPv6, Simulador de red NS-3.

https://doi.org/10.25100/iyc.v19i1.2141

169

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

1. Introduction

The progress in adopting the IPv6 protocol (Deering
& Hinden, 1998) on the side of the different
global Internet providers can be evidenced in the
measurements the ISOC (Internet Society, 2014)
performs periodically in order to show the different
dimensions which can be considered in regards to
such aspect. As a consequence of this, the topics
related to IPv6 have begun to be dealt with in some
textbooks which approach content related to TCP/
IP architecture (Stevens & Fall, 2011) and the
Internetworking discipline (Comer, 2013).

The latter demands the need to approach the topics
related to IPv6 in a classroom setting, specifically
in those classes in which TCP/IP architecture
is the cornerstone. In order to gain a higher
practical experience on certain topics, some books
(Peterson & Davie, 2011) suggest complementing
certain fixed topics with an experiment handbook
on network simulation (Aboelela, 2011), which
makes use of the Opnet Modeler tool (Opnet,
2012). Nevertheless, no related simulations have
yet been approached with some of the fundamental
concepts of IPv6 or its related routing protocol.

In 2006 the NS-3 network simulator project was
born, which has GNU GPLv2 license terms with
architecture and features which are documented
on their Website (NS-3, 2006). One of the main
characteristics of the NS-3 design is that it improves
the model’s realism (Riley & Henderson, 2010).
Furthermore, it allows users to develop their
simulations by using C++ main() or Python. In NS-
3, simulation results can be obtained via pcap (packet
capture) format files, such format is deciphered with
tcpdump and Wireshark (Combs, 1998) in order to
represent the captured packets on a physical network,
which becomes useful in the network protocol
learning drawn from a simulated model.

In 2008, the IPv6 basic implementation was
developed for NS-3 (Vincent et al., 2008), which
provides support to the following protocols: NDP
or Neighbor Discovery Protocol for IP version
6; ICMPv6; and SLAAC or StateLess Address
AutoConfiguration (Tomson et al. 2007). On June

2014, the 3.20 NS-3 version supported a dynamic
routing protocol for IPv6 for the first time; the
supported protocol for IPv6 is RIPng (Malking &
Minnear, 1997).

Given that NS-3 allows experimenting with
different network protocols in general, and
particularly with the IPv6 related protocols, in
this article a C++ main() program was developed
by implementing the libraries for IPv6 on NS-3
version 3.24. This program aims to make a
contribution to the practical teaching of the
RIPng for IPv6, facilitating the student-protocol
interaction. When using it, four functions can be
invoked named linkdown, splitHorizonStrategy,
showPings and printRoutingTables, with which is
sought to achieve the following goals:

linkdown. Once simulation has begun and after the
routers have consistently learnt the routes to reach
the IPv6 destination networks, that is to say, after
these have converged, it is possible to tear down
a link which is currently transporting IPv6 traffic,
right at the moment defined by linkdown. With
such tear down it is possible to force the routers to
recalculate alternate routes and interchange RIPng
protocol messages. The above makes possible the
capturing and analysis of the RIPng related packets.

splitHorizonStrategy. According to the chosen Split
Horizon strategy, it is possible to: 1. Make evident the
infinite count issue by means of the NoSplitHorizon
option. 2. Improve the time to stabilize routing by
means of the SplitHorizon option, thus avoiding node
announcement of the learnt routes from its neighbors
when returning. 3. Enable a stronger variation
of Split Horizon by means of the PoisonReverse
option, allowing returning nodes to announce the
learnt routes from its neighbor, but poisoning them
by associating them to a cost of 16 or infinite.

showPings. When a source system sends ICMPv6
echo request messages (type 128) to a final
destination system, the showPings option allows
observing the recognition responses by means of
ICMPv6 echo reply messages (type 129). It is
also possible that the emitter receives ICMPv6
messages of inaccessible destination (type 1),

170

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

ICMPv6 messages of exceeded time (type 3) for
having exceeded the limit of transit leaps, or simply
there is no response, depending on the network
conditions, at a given moment of the simulation.

printRoutingTables. It allows knowing the content
of routing tables within intermediate systems
(routers) in the following programmable instances:
1 second before the link’s tear down, 20 seconds

after the link’s tear down and 50 seconds after the
link’s tear down.

2. Methodology

Figure 1 shows the IPv6 network typology which
has been modeled by using the C++ main()
programming language of NS-3. Generally, the
network is made up of the following elements:

Six CSMA wired networks (net 1, net 2, net 3, net
4, net 5 and net 6), all networks have a cost of 1
(hop count of 1), except net 5 which has a cost of
10. It has to be said that the only network which
fails in the indicated instance by linkdown is net 4.

A final emitting system (node n0) which sends
ICMPv6 echo request messages towards a final
destination system (node n5), which replies every
request message with an ICMPv6 echo reply
message.

Four intermediate systems or network routers (R1,
R2, R3 and R4).

Finally, an IPv6 global routing prefix (2001:0::0/32)
assigned to a site, in which 32 bits of subnet are ad-
ded, value which allows identifying each of the
subnets which make up the site, for instance, the pre-
fix 2001:0:3:0::0/64 corresponds to subnet 3 (net 3).

Each node network interface has an assigned MAC
address of which hexadecimal value in the first 44
bits is 00:00:00:00:00:0, whereas the value of the last
4 bits are assigned from 1 up to C depending on the
order that these are created by the program in NS-3.
In regards to the IPv6 addresses, each interface has in
the last 64 bits a unique value (Interface ID), which
allows differentiating it from the rest. Given that
NS-3 is operating with Extended Unique Identifier
EUI-64TM, the value of the last 24 bits of IPv6 and
MAC addresses must coincide. Taking into account
the latter, in the ends of each link on Figure 1 the last
4 bits of the MAC address are shown and at the same
time the last 16 bits of the Interface ID are indicated;
the 200:00ff:fe00 common value is omitted from the
first 48 Interface ID bits, since such value repeats
itself in every IPv6 address.

Before the net 4 network tear down, communication
between nodes n0 and n5 uses path 1 in both the

Figure 1. Network topology model in NS3 with the RIPng protocol for IPv6.

171

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

outbound and returning trips. After the net 4
network tear down and before the necessary
time has passed for the routers to converge by
means of the RIPng protocol, communication
between nodes n0 and n5 is not possible, and as a
consequence node 0 is going to receive ICMPv6
error report messages. Furthermore, during this
time period routing loops can arise, depending
on the Split Horizon strategy that is used for the
simulation. Once the routers have converged,
the communication between nodes n0 and n5 is
reestablished through path 2, which is used in
both outbound and returning trips.

When executing the NS-3 simulation, the program
generates 12 outbound files in pcap format, which
are later on analyzed with Wireshark. Figure 1
indicates the name of the associated file for each

node interface, for example, the n0 emitting system
has the P-n0-0 file assigned to its interface (this
nomenclature is used for representing: P = pcap file;
n0 = nodo n0; 0 = interface 0), while the R1 system
has the three P-r1-0, P-r1-1 and P-r1-2 assigned, one
for each interface.

Figure 2 presents the program’s flow diagram
where the developed system blocks are shown. In
block 2 are shown the command names of the four
functions mentioned in the introduction section,
these names can be used individually or combined.
Block 3 shows the command line which the user
has to insert for running the program; this uses the
Waf compiler to run the ripng-training program,
followed by the function or functions which want
to be activated (linkdown, splitHorizonStrategy,
showPings, printRoutingTables).

Figure 2. Program flowchart for learning RIPng.

172

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

Block 4 validates the command introduced by
the user according to the functions which want
to be run. When the command is correct, block
5 captures, within the respective variables, the
required functions; such variables are used to
later run the required functions. The simulation
has a total running time of 120 seconds and with
the linkdown command the value is programmed,
in seconds, in regards to the instant when the net
4 link tear down should arise; such value can be
in the range of 10 to 60 seconds. When values
outside of the range are introduced, the program is
run, but it uses the values established by default,
that is of 10 seconds for values under the lower
limit and of 60 seconds for values over the upper
limit. By means of block 6 the user is given on-
screen feedback by indicating the used value for
the moment of the net 4 network tear down.

Block 7 creates the nodes, the node containers, the
network device containers and the channels. It also
installs the channels to the network device containers.
Lines 1 to 10, in Figure 3, show a fraction of the
code which creates the n0 and R1 nodes and installs
the CSMA channel in the net 1 network.

1 Ptr<Node> src = CreateObject<Node> ();
2 Names::Add (“n0”, src);
3 Ptr<Node> a = CreateObject<Node> ();
4 Names::Add (“r1”, a);
5 NodeContainer net1 (src, a);
6 NodeContainer endsystems (src, dst);
7 NodeContainer routers (a, b, c, d);
8 ...
9 CsmaHelper csma;
10 NetDeviceContainer ndc1 = csma.Install (net1);
11 ...
12 RipNgHelper ripNgRouting;
13 ripNgRouting.SetInterfaceMetric (c, 2, 10);
14 ripNgRouting.SetInterfaceMetric (d, 2, 10);
15 ...
16 Ipv6ListRoutingHelper listRH;
17 listRH.Add (ripNgRouting, 0);
18 ...
19 InternetStackHelper internetv6;

20 internetv6.SetIpv4StackInstall (false);
21 internetv6.SetRoutingHelper (listRH);
22 internetv6.Install (routers);
23 ...
24 InternetStackHelper internetv6Nodes;
25 internetv6Nodes.SetIpv4StackInstall (false);
26 Iinternetv6Nodes.Install (endsystems);
27 ...
28 ipv6.SetBase (Ipv6Address (“2001:0:3::”), Ipv6Prefix (64));
29 Ipv6InterfaceContainer iic3 = ipv6.Assign (ndc3);
30 ...
31 Simulator::Schedule (Seconds (int (linkdown)),

&TearDownLink, b, d, 2, 1);
32 ...
33 csma.EnablePcapAll (“ripng”, true);
34 routingHelper.PrintRoutingTableAt (Seconds

(linkdown+20), a, routingStream);
35 ...
36 Simulator::Stop (Seconds (120));

Figure 3. Code fragments of the "ripng-training"
program, in C ++ main ().

*Continued Figure 3.

*Continue Figure 3.

Block 8 creates the RIPng protocol, assigns a
value of 10 to the net 5 link and leaves by default
the cost value of 1 for the other links. It installs the
IPv6 stack on the final systems and the routers; in
the latter the IPv6 stack remains RIPng enabled.
This is present on lines 12 to 26 in Figure 3.

Block 9 uses the API Ipv6AddressHelper to create
IPv6 prefixes for site subnets. Lines 28 and 29
in Figure 3 illustrate the 2001:0:3::/64 prefix
creation, which corresponds to the net 3 subnet.
Block 10 programs the moment in which the net
4 link must fail, which is illustrated with line 31
in Figure 3.

In block 10, the ping6 application begins once
t=1 and stops when t=110, producing a maximum
transfer of 100 packets at a rate of one packet per
second. Block 11 generates 12 pcap files by using
line 33 in Figure 3. It also records the information
from the R1, R2, R3 and R4 routing tables on
the linkdown-1, linkdown+20 and linkdown+50
moments. Line 34 allows registering the R1
routing table at the linkdown+20 moment.

173

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

3. Results

3.1 Routing tables according to the split
horizon strategy

Line 37 in Figure 4 allows running the simulation
by using the inverse poisoning option, force a tear
down on the net 4 link at 40 seconds and activate
the option to show the routing tables in-screen for
the R1 (node 1), R2 (node 2), R3 (node 3) and R4
(node 4) systems at different instances during the
simulation. Lines 39 to 46 show the interesting
part in the R2 routing table for moment t=39, just
1 second before tear down happens; in such case,
it can be observed that the R2 system knows all the
IPv6 networks, including the 2001:0:4::/64 network,
soon to fail. Lines 47 to 49 signify that at moment
t=60, the 2001:0:4::/64 prefix is no longer in the R2
routing table because the net 4 network has failed;
the prefix has been crossed out to illustrate that it
does not appear in the table. Lines 50 to 52 show
that at moment t=90, the 2001:0:4::/64 prefix is
present in the R2 routing table, but with a metric
of 16, that is to say, the R1 router has announced a
route back to the R2 router about the existence of the
2001:0:4::/64 prefix, but with an infinite cost; this is
so R2 does not use R1 when it needs to send IPv6
datagrams towards said prefix as destination.

37 $./waf --run “scratch/ripng-training --sp
litHorizonStrategy=PoisonReverse
--printRoutingTables=1 --linkdown=40”

38 ...
39 Node: 2 Time: 39s Ipv6ListRouting table

Priority: 0 Protocol: ns3::RipNg
40 Destination Next Hop Flag Met Ref Use If
41 2001:0:1::/64 fe80::200:ff:fe00:3 UG 2 - - 1
42 2001:0:3::/64 fe80::200:ff:fe00:3 UG 2 - - 1
43 2001:0:6::/64 fe80::200:ff:fe00:8 UG 2 - - 2
44 2001:0:5::/64 fe80::200:ff:fe00:8 UG 2 - - 2
45 2001:0:2::/64 :: U 1 - - 1
46 2001:0:4::/64 :: U 1 - - 2
47 Node: 2 Time: 60s Ipv6ListRouting table
48 Destination Next Hop Flag Met Ref Use If
49 2001:0:4::/64 :: U 1 - - 2 (Lost entry)
50 Node: 2 Time: 90s Ipv6ListRouting table

51 Destination Next Hop Flag Met Ref Use If
52 2001:0:4::/64 fe80::200:ff:fe00:3 UG 16 - - 1

(Poisoned entry)
53 ...
54 $./waf --run “scratch/ripng-training --splitHori

zonStrategy=SplitHorizon --linkdown=40”

55 Node: 2 Time: 90s Ipv6ListRouting table
56 Destination Next Hop Flag Met Ref Use If
57 2001:0:4::/64 :: U 1 - - 2 (Lost entry)
58 ...
59 $./waf --run “scratch/ripng-training --splitHori

zonStrategy=NoSplitHorizon --linkdown=40”

60 Node: 2 Time: 60s Ipv6ListRouting table
61 Destination Next Hop Flag Met Ref Use If
62 2001:0:4::/64 fe80::200:ff:fe00:3 UG 9 - - 1

(Loop entry in R2)
63 ...
64 Node: 1 Time: 60s Ipv6ListRouting table
65 Destination Next Hop Flag Met Ref Use If
66 2001:0:4::/64 fe80::200:ff:fe00:4 UG 8 - - 2

(Loop entry in R1)

*Continue Figure 4.

*Continued Figure 4.

Figure 4. Routing tables for different Split Horizon strategies.

Lines 54 to 57 signify that when the used strategy
is Split Horizon, at moment t=90 the R2 system
routing table does not have the entry for the
2001:0:4::/64 prefix (crossed out); that is to say,
there is no poisoning for such prefix’s route. Lines
59 to 66 show that when the strategy disables
the Split Horizon characteristic, at moment t=60
a routing loop arises; this is because R1 aims
towards R2 and at the same time R2 aims towards
R1 in order to reach the 2001:0:4::/64 destination.
Although it is not shown in Figure 4, the latter
loop also arises to reach the 2001:0:6::/64 prefix.

Figure 5 solely represents some of the captured
and stored packets within the pcap file named
P-r2-0. Line 68 is a heading which indicates that
the following packets correspond to the enabled
inverse poisoning strategy. Line 69 indicates that
the RIPng packet number 98, present at moment
t=43.02, is sent by R1 to R2 in order to indicate to it
that it lost the entries to reach the 2001:0:6::/64 (net
6) and 2001:0:4::/64 (net 4) networks; given that the
announced cost is infinite (16). In line 70, R1 send

174

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

packet 104 to R2 at moment t=87.99 to inform that
it knows how to reach all of the networks, except
net 4, via a new route. In line 71, R2 sends packet
106 to R1 at moment t=92.96, which poisons the
routes announced by R1 on its way back. For
the Split Horizon strategy, line 73 indicates that
R2 sends packet 102 to R1 at moment t=92.96,
which does not poison the routes R1 previously
announced on its way back; it only announces net

67 No Time Source Destination Info
68 Poison Reverse
69 98 43.02 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (16) 2001:0:4::/64

(16) 2001:0:1::/64 (1) 2001:0:2::/64 (16)
70 104 87.99 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (12) 2001:0:4::/64

(16) 2001:0:1::/64 (1) 2001:0:2::/64 (16)
2001:0:3::/64 (1)

71 106 92.96 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:1::/64 (16) 2001:0:3::/64 (16) 2001:0:6::/64
(16) 2001:0:5::/64 (16) 2001:0:2::/64 (16)
2001:0:4::/64 (16)

72 Split Horizon
73 102 92.96 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:4::/64 (16)
74 No Split Horizon
75 98 43.02 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (3) 2001:0:4::/64 (2)

2001:0:1::/64 (1) 2001:0:2::/64 (1) 2001:0:3::/64 (1)
76 99 43.55 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:6::/64 (4) 2001:0:5::/64 (3) 2001:0:4::/64 (3)

4 as having infinite cost. For the strategy in which
Split Horizon is disabled, line 75 indicates that R1
sends back routes to R2 which it had previously
learnt from R2; net 4 with a cost of 2 and net 6 with
a cost of 3. Line 76 indicates that R2 sends routes
back to R1 which it had previously learnt from R1;
net 4 with a cost of 3 and net 6 with a cost of 4.
Lines 75 along with 76 indicate that when Split
Horizon is disabled, routing loops can be created.

Figure 5. Traces from Wireshark for RIPng with different Split Horizon strategies (P-r2-0).

3.2 ICMPv6 control and error report message

Lines 77 to 81 in Figure 6 represent some ICMPv6
messages from the P-r2-0 file. Line 79 is a Destination
unreachable ICMPv6 message (type 1) which R2

sends to the n0 node. Line 80 is a Redirect ICMPv6
message (type 137) which R2 sends R1. Finally, line
81 is a Time exceeded ICMPv6 message (type 3)
which R2 sends to the n0 node.

77 Time Source Destination Info
78 No Split Horizon
79 40:00 2001:0:2:0:200:ff:fe00:4 2001:0:1:0:200:ff:fe00:1 unreachable route 2001:0:6:0:200:ff:fe00:c,

ICMPv6 type 1
80 44:00 Mac: 00:00:00:00:00:04

fe80::200:ff:fe00:4
Mac: 00:00:00:00:00:03
2001:0:1:0:200:ff:fe00:1

redirect, 2001:0:6:0:200:ff:fe00:c to
fe80::200:ff:fe00:3, ICMPv6 type 137

81 44.37 2001:0:2:0:200:ff:fe00:4 2001:0:1:0:200:ff:fe00:1 time exceeded in-transit for
2001:0:6:0:200:ff:fe00:c, ICMPv6 type 3

Figure 6. Traces for ICMPv6 messages, No Split Horizon strategy.

3.3 Contribution and justification

Running the software generates information which
allows students to contrast theoretical concepts of

RIPng protocol to the true behavior of said
protocol within a simulated network. The software
incorporates parameters which allow controlling
various network events and defining the information

175

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

that is required to be obtained in a specific manner.
The software is flexible since it allows different
types of changes, as for example within network
topology and IPv6 addresses which are desired to be
assigned to the nodes.

4. Discussion

When the RIPng protocol is enabled within the
intermediate systems, it was possible to verify that the
routers send the routing tables periodically every 30
seconds independently from the used Split Horizon
strategy, and they also send the tables when there is
a specific event, as usually is the reestablishment or
tear down of a link. It was also evidenced that RIPng
uses a 1 to 16 metric, which represents the hop
count and also shows 15 as the maximum amount
of hops. When the linkdown function is running, it
is observed that, as a matter of fact, it is possible
to control the desired moment to tear down the net
4 link (by simulating a failure), and thus force the
intermediate IPv6 network systems to recalculate
the routing tables which allow to obtain new routes
which take into account the other available links.
When trying to revert the linkdown function with
the purpose of uploading the net 4 link after having
closed it, it was found that even though the net 4
link uploads, the R2 (2001:0:4:0:200:ff:fe00:7) and
R4 (2001:0:4:0:200:ff:fe00:8) interfaces, which
are common to the net 4 link, only recover the
local-link address scope (fe80::200:ff:fe00:7 and
fe80::200:ff:fe00:8) and lose their global address,
thus the 2001:0:4::/64 disappears from the routing
tables; this suggests that a problem-to-solve has
been identified within the implementation of the
IPv6 protocol in NS-3. In terms of routing loop
prevention, when contrasting the simulations used
by the Poison Reverse strategies, Split Horizon and
disabled Split Horizon, it is found that the most
helpful one for said purpose is inverse poisoning, the
intermediate one is Split Horizon and the worst is
the one which disables Split Horizon. In the reverse
poisoning strategy, during the first 120 seconds of
simulation, 106 packets were captured in the P-r2-
0, and in the last packet it is evidenced that R2
sends R1 the prefixes which it previously learnt
from R1, but it sends them at an infinite cost, that
is to say, it sends the poisoned routes. In the Split

Horizon strategy, during the same 120 seconds of
simulation, 102 packets were captured in the P-r2-0
file, and it is evidenced that in the last packet, R2
does not poison nor sends R1 the prefixes previously
learnt from R1, it only sends the announcement of
net 4 at infinite cost. Finally, in the strategy which
disables Split Horizon, during the same 120 seconds
of simulation, 2,971 packets were captured in the
P-r2-0 file, and it is evidenced that after moments
t=43.02 and t=43.55, along packets 98 and 99, the
R1 and R2 systems initiate an interchange of route
announcements which cause the setting up of the
routing loops. It is also important to highlight that
the elevated packet number is largely due to the fact
that the IPv6 datagrams with destination to the n5
node keep looping between R1 and R2, in addition
to the time exceeded ICMPv6 messages (type 3) due
to the hop count limit and redirect ICMPv6 messages
(type 137) which are generated owing to this.

The option for printing routing tables is a powerful
tool given that it allows examining the routing
tables of any IPv6 network system at any time.
Specifically, at the moments of interest for this
case: one second before the tear down, 20 seconds
after the tear down and 50 seconds after the tear
down. With the obtained output saved on a text file,
it was possible to evince that the R1, R2, R3 and R4
systems had the expected entry routes; it is worthy
to note that it was possible to identify those entries
that a system had lost, those which had arrived
poisoned and those which caused routing loops.
Meanwhile, the showPings option allows having a
general idea about what is going on with the traffic
that the n0 node sends to the n5 node.

Finally, when examining the captured packets
with Wireshark, it is observed that the R1 and
R2 systems send type 1 and type 3 ICMPv6
messages to the n0 node in order to indicate
unreachable destination and exceeded hop count
limit, respectively. This indicates a standard IPv6
protocol procedure by the time the router has lost
a route or by the time the packet’s hop count has
reached zero. Notwithstanding, type 137 ICMPv6
messages were also observed, which are route
correctors sent by R2 to R1 when routing loops
arise; since R2 assumes that R1 has the best route

176

Ingeniería Y Competitividad, Volumen 19, No. 1, P. 168 - 176 (2017)

Revista Ingeniería y Competitividad por Universidad del Valle se encuentra bajo una licencia Creative
Commons Reconocimiento - Debe reconocer adecuadamente la autoría, proporcionar un enlace a la
licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no
de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.

to reach the 2001:0:6::/64 network. This last part
implies an incorrect operation of the NS-3 IPv6
stack inasmuch as the source of the message is not
from the R1 system, but instead from the n0 node.

5. Conclusions

With the developed software an IPv6 network can
be simulated, made up of nodes which have the
IPv6 stack installed and which are interconnected
by CSMA link. Within the nodes which operate
as routers, a RIPng routing protocol must be
additionally installed. In the simulation, the moment
of a specific link tear down can be programmed
as well as the Split Horizon strategy which is
going to be used in the RIPng protocol. Based on
the information generated by the simulation, it is
possible to analyze the node routing tables, the
network convergence times and the finest traffic
details of the interchanged packets. All of the above
allows verifying the grounded concepts in regards
to RIPng protocol.

6. References

Aboelela, E. (2011). Network Simulation
Experiments Manual. (5th Edition). Burlington,
Massachusetts: Morgan Kaufmann.

Combs, G. (1998). Wireshark. [Viewed in
December 2015] http://www.wireshark.org

Comer, D.E. (2013). Internetworking with TCP/IP
Volume One. (6th Edition). New Jersey: Addison-
Wesley.

Deering, S. & Hinden, R. (1998). Internet Protocol,
Version 6 (IPv6) Specification. In IETF (The Internet
Engineering Task Force) Request for Comments
2460. [Viewed in December 2015] http://www.ietf.
org/rfc/rfc2460.txt

Internet Society. (2014). The future is forever,
world IPv6 launch – Meachurements. [Viewed
in December 2015] http://www.worldipv6launch.
org/measurements/

Malking, G. & Minnear, R. (1997). RIPng for
IPv6. In IETF (The Internet Engineering Task
Force) Request for Comments 2080. [Viewed in
December 2015] https://tools.ietf.org/html/rfc2080

Ns-3 (2006). The ns-3 Project. [Viewed in December
2015] http://www.nsnam.org/

Opnet Technologies. (2012). Application and
network performance. [Viewed in December 2015]
http://www.opnet.com/

Peterson, L.L. & Davie, B.S. (2011). Computer
Networks: A Systems Approach. (Fifth Edition).
Burlington, Massachusetts: Morgan Kaufmann.

Riley, G.F. & Henderson T.R. (2010). Modeling
and Tools for Network Simulation. Berlin
Heidelberg: Springer-Verlag.

Stevens, W.R. & Fall, K.R. (2011). TCP/IP
Illustrated, Volume 1: The Protocols. (2nd Edition).
New Jersey: Addison-Wesley Professional.

Thomson, S., Narten, T. & Jinmei, T. (2007). IPv6
Stateless Address Autoconfiguration, Internet
Engineering Task Force Request for Comments
(RFC) 4862. [Viewed in December 2015] http://
www.ietf.org/rfc/rfc4862.txt

Vincent, S., Montavont, J. & Montavont, N.
(2008). Implementation of an IPv6 stack for ns-3,
Proceedings of the 3rd International Conference
on Performance Evaluation Methodologies and
Tools. Athens, Greece.

