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Abstract
This article shows the implementation of simulation software which aims to facilitate learning the RIPng 
protocol (for IPv6). This is based on an IPv6 network with loop topology, on which it is possible to 
program the tear down moment for one of the least-cost links; said link has been previously used in the 
routing table calculations which were operating before the tear down. Simulation includes three options 
which allow the user to choose the control strategy which helps avoiding routing loops: PoisonReverse, 
SplitHorizon and NoSplitHorizon. The software was developed under the programming environment of 
the NS-3 network simulator.

Keywords: ICMPv6, NS-3 Network Simulator, RIPng for IPv6, Split Horizon strategy.

Resumen
En este artículo, se presenta la implementación de un programa de simulación mediante el cual se busca 
facilitar el aprendizaje del protocolo RIPng (para IPv6). Este se basa en una red IPv6 con topología en bucle, 
sobre la cual, se puede programar el instante de falla de uno de los enlaces de menor costo; dicho enlace a su 
vez ha sido utilizado previamente en el cálculo de la tabla de enrutamiento que se encontraba en operación 
antes de la falla. La simulación incluye tres opciones que le permiten al usuario seleccionar la estrategia de 
control que ayuda a evitar los bucles de enrutamiento: PoisonReverse, SplitHorizon y NoSplitHorizon. El 
programa fue desarrollado bajo el entorno de programación del simulador de red NS-3.

Palabras clave: Estrategia Split Horizon, ICMPv6, RIPng para IPv6, Simulador de red NS-3.
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1. Introduction

The progress in adopting the IPv6 protocol (Deering 
& Hinden, 1998) on the side of the different 
global Internet providers can be evidenced in the 
measurements the ISOC (Internet Society, 2014) 
performs periodically in order to show the different 
dimensions which can be considered in regards to 
such aspect. As a consequence of this, the topics 
related to IPv6 have begun to be dealt with in some 
textbooks which approach content related to TCP/
IP architecture (Stevens & Fall, 2011) and the 
Internetworking discipline (Comer, 2013). 

The latter demands the need to approach the topics 
related to IPv6 in a classroom setting, specifically 
in those classes in which TCP/IP architecture 
is the cornerstone. In order to gain a higher 
practical experience on certain topics, some books 
(Peterson & Davie, 2011) suggest complementing 
certain fixed topics with an experiment handbook 
on network simulation (Aboelela, 2011), which 
makes use of the Opnet Modeler tool (Opnet, 
2012). Nevertheless, no related simulations have 
yet been approached with some of the fundamental 
concepts of IPv6 or its related routing protocol.

In 2006 the NS-3 network simulator project was 
born, which has GNU GPLv2 license terms with 
architecture and features which are documented 
on their Website (NS-3, 2006). One of the main 
characteristics of the NS-3 design is that it improves 
the model’s realism (Riley & Henderson, 2010). 
Furthermore, it allows users to develop their 
simulations by using C++ main() or Python. In NS-
3, simulation results can be obtained via pcap (packet 
capture) format files, such format is deciphered with 
tcpdump and Wireshark (Combs, 1998) in order to 
represent the captured packets on a physical network, 
which becomes useful in the network protocol 
learning drawn from a simulated model.

In 2008, the IPv6 basic implementation was 
developed for NS-3 (Vincent et al., 2008), which 
provides support to the following protocols: NDP 
or Neighbor Discovery Protocol for IP version 
6; ICMPv6; and SLAAC or StateLess Address 
AutoConfiguration (Tomson et al. 2007). On June 

2014, the 3.20 NS-3 version supported a dynamic 
routing protocol for IPv6 for the first time; the 
supported protocol for IPv6 is RIPng (Malking & 
Minnear, 1997).

Given that NS-3 allows experimenting with 
different network protocols in general, and 
particularly with the IPv6 related protocols, in 
this article a C++ main() program was developed 
by implementing the libraries for IPv6 on NS-3 
version 3.24. This program aims to make a 
contribution to the practical teaching of the 
RIPng for IPv6, facilitating the student-protocol 
interaction. When using it, four functions can be 
invoked named linkdown, splitHorizonStrategy, 
showPings and printRoutingTables, with which is 
sought to achieve the following goals:

linkdown. Once simulation has begun and after the 
routers have consistently learnt the routes to reach 
the IPv6 destination networks, that is to say, after 
these have converged, it is possible to tear down 
a link which is currently transporting IPv6 traffic, 
right at the moment defined by linkdown. With 
such tear down it is possible to force the routers to 
recalculate alternate routes and interchange RIPng 
protocol messages. The above makes possible the 
capturing and analysis of the RIPng related packets.

splitHorizonStrategy. According to the chosen Split 
Horizon strategy, it is possible to: 1. Make evident the 
infinite count issue by means of the NoSplitHorizon 
option. 2. Improve the time to stabilize routing by 
means of the SplitHorizon option, thus avoiding node 
announcement of the learnt routes from its neighbors 
when returning. 3. Enable a stronger variation 
of Split Horizon by means of the PoisonReverse 
option, allowing returning nodes to announce the 
learnt routes from its neighbor, but poisoning them 
by associating them to a cost of 16 or infinite. 

showPings. When a source system sends ICMPv6 
echo request messages (type 128) to a final 
destination system, the showPings option allows 
observing the recognition responses by means of 
ICMPv6 echo reply  messages (type 129). It is 
also possible that the emitter receives ICMPv6 
messages of inaccessible destination (type 1), 
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ICMPv6 messages of exceeded time (type 3) for 
having exceeded the limit of transit leaps, or simply 
there is no response, depending on the network 
conditions, at a given moment of the simulation.

printRoutingTables. It allows knowing the content 
of routing tables within intermediate systems 
(routers) in the following programmable instances: 
1 second before the link’s tear down, 20 seconds 

after the link’s tear down and 50 seconds after the 
link’s tear down. 

2. Methodology

Figure 1 shows the IPv6 network typology which 
has been modeled by using the C++ main() 
programming language of NS-3. Generally, the 
network is made up of the following elements: 

Six CSMA wired networks (net 1, net 2, net 3, net 
4, net 5 and net 6), all networks have a cost of 1 
(hop count of 1), except net 5 which has a cost of 
10. It has to be said that the only network which 
fails in the indicated instance by linkdown is net 4.

A final emitting system (node n0) which sends 
ICMPv6 echo request messages towards a final 
destination system (node n5), which replies every 
request message with an ICMPv6 echo reply 
message.

Four intermediate systems or network routers (R1, 
R2, R3 and R4).

Finally, an IPv6 global routing prefix (2001:0::0/32) 
assigned to a site, in which 32 bits of subnet are ad-
ded, value which allows identifying each of the 
subnets which make up the site, for instance, the pre-
fix 2001:0:3:0::0/64 corresponds to subnet 3 (net 3).

Each node network interface has an assigned MAC 
address of which hexadecimal value in the first 44 
bits is 00:00:00:00:00:0, whereas the value of the last 
4 bits are assigned from 1 up to C depending on the 
order that these are created by the program in NS-3. 
In regards to the IPv6 addresses, each interface has in 
the last 64 bits a unique value (Interface ID), which 
allows differentiating it from the rest. Given that 
NS-3 is operating with Extended Unique Identifier 
EUI-64TM, the value of the last 24 bits of IPv6 and 
MAC addresses must coincide. Taking into account 
the latter, in the ends of each link on Figure 1 the last 
4 bits of the MAC address are shown and at the same 
time the last 16 bits of the Interface ID are indicated; 
the 200:00ff:fe00 common value is omitted from the 
first 48 Interface ID bits, since such value repeats 
itself in every IPv6 address. 

Before the net 4 network tear down, communication 
between nodes n0 and n5 uses path 1 in both the

Figure 1. Network topology model in NS3 with the RIPng protocol for IPv6.
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outbound and returning trips. After the net 4 
network tear down and before the necessary 
time has passed for the routers to converge by 
means of the RIPng protocol, communication 
between nodes n0 and n5 is not possible, and as a 
consequence node 0 is going to receive ICMPv6 
error report messages. Furthermore, during this 
time period routing loops can arise, depending 
on the Split Horizon strategy that is used for the 
simulation. Once the routers have converged, 
the communication between nodes n0 and n5 is 
reestablished through path 2, which is used in 
both outbound and returning trips.

When executing the NS-3 simulation, the program 
generates 12 outbound files in pcap format, which 
are later on analyzed with Wireshark. Figure 1 
indicates the name of the associated file for each 

node interface, for example, the n0 emitting system 
has the P-n0-0 file assigned to its interface (this 
nomenclature is used for representing: P = pcap file; 
n0 = nodo n0; 0 = interface 0), while the R1 system 
has the three P-r1-0, P-r1-1 and P-r1-2 assigned, one 
for each interface.

Figure 2 presents the program’s flow diagram 
where the developed system blocks are shown. In 
block 2 are shown the command names of the four 
functions mentioned in the introduction section, 
these names can be used individually or combined. 
Block 3 shows the command line which the user 
has to insert for running the program; this uses the 
Waf compiler to run the ripng-training program, 
followed by the function or functions which want 
to be activated (linkdown, splitHorizonStrategy, 
showPings, printRoutingTables).

Figure 2. Program flowchart for learning RIPng.
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Block 4 validates the command introduced by 
the user according to the functions which want 
to be run. When the command is correct, block 
5 captures, within the respective variables, the 
required functions; such variables are used to 
later run the required functions. The simulation 
has a total running time of 120 seconds and with 
the linkdown command the value is programmed, 
in seconds, in regards to the instant when the net 
4 link tear down should arise; such value can be 
in the range of 10 to 60 seconds. When values 
outside of the range are introduced, the program is 
run, but it uses the values established by default, 
that is of 10 seconds for values under the lower 
limit and of 60 seconds for values over the upper 
limit. By means of block 6 the user is given on-
screen feedback by indicating the used value for 
the moment of the net 4 network tear down.

Block 7 creates the nodes, the node containers, the 
network device containers and the channels. It also 
installs the channels to the network device containers. 
Lines 1 to 10, in Figure 3, show a fraction of the 
code which creates the n0 and R1 nodes and installs 
the CSMA channel in the net 1 network.

1 Ptr<Node> src = CreateObject<Node> ();
2 Names::Add (“n0”, src);
3 Ptr<Node> a = CreateObject<Node> ();
4 Names::Add (“r1”, a);
5 NodeContainer net1 (src, a);
6 NodeContainer endsystems (src, dst);
7 NodeContainer routers (a, b, c, d);
8 ...
9 CsmaHelper csma;
10 NetDeviceContainer ndc1 = csma.Install (net1);
11 ...
12 RipNgHelper ripNgRouting;
13 ripNgRouting.SetInterfaceMetric (c, 2, 10);
14 ripNgRouting.SetInterfaceMetric (d, 2, 10);
15 ...
16 Ipv6ListRoutingHelper listRH;
17 listRH.Add (ripNgRouting, 0);
18 ...
19 InternetStackHelper internetv6;

20 internetv6.SetIpv4StackInstall (false);
21 internetv6.SetRoutingHelper (listRH);
22 internetv6.Install (routers);
23 ...
24 InternetStackHelper internetv6Nodes;
25 internetv6Nodes.SetIpv4StackInstall (false);
26 Iinternetv6Nodes.Install (endsystems);
27 ...
28 ipv6.SetBase (Ipv6Address (“2001:0:3::”), Ipv6Prefix (64));
29 Ipv6InterfaceContainer iic3 = ipv6.Assign (ndc3);
30 ...
31 Simulator::Schedule (Seconds (int (linkdown)), 

&TearDownLink, b, d, 2, 1); 
32 ...
33 csma.EnablePcapAll (“ripng”, true);
34 routingHelper.PrintRoutingTableAt (Seconds 

(linkdown+20), a, routingStream);
35 ...
36 Simulator::Stop (Seconds (120)); 

Figure 3. Code fragments of the "ripng-training" 
program, in C ++ main ().

*Continued Figure 3.

*Continue Figure 3.

Block 8 creates the RIPng protocol, assigns a 
value of 10 to the net 5 link and leaves by default 
the cost value of 1 for the other links. It installs the 
IPv6 stack on the final systems and the routers; in 
the latter the IPv6 stack remains RIPng enabled. 
This is present on lines 12 to 26 in Figure 3.

Block 9 uses the API Ipv6AddressHelper to create 
IPv6 prefixes for site subnets. Lines 28 and 29 
in Figure 3 illustrate the 2001:0:3::/64 prefix 
creation, which corresponds to the net 3 subnet. 
Block 10 programs the moment in which the net 
4 link must fail, which is illustrated with line 31 
in Figure 3.

In block 10, the ping6 application begins once 
t=1 and stops when t=110, producing a maximum 
transfer of 100 packets at a rate of one packet per 
second. Block 11 generates 12 pcap files by using 
line 33 in Figure 3. It also records the information 
from the R1, R2, R3 and R4 routing tables on 
the linkdown-1, linkdown+20 and linkdown+50 
moments. Line 34 allows registering the R1 
routing table at the linkdown+20 moment.
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3. Results

3.1 Routing tables according to the split 
horizon strategy

Line 37 in Figure 4 allows running the simulation 
by using the inverse poisoning option, force a tear 
down on the net 4 link at 40 seconds and activate 
the option to show the routing tables in-screen for 
the R1 (node 1), R2 (node 2), R3 (node 3) and R4 
(node 4) systems at different instances during the 
simulation. Lines 39 to 46 show the interesting 
part in the R2 routing table for moment t=39, just 
1 second before tear down happens; in such case, 
it can be observed that the R2 system knows all the 
IPv6 networks, including the 2001:0:4::/64 network, 
soon to fail. Lines 47 to 49 signify that at moment 
t=60, the 2001:0:4::/64 prefix is no longer in the R2 
routing table because the net 4 network has failed; 
the prefix has been crossed out to illustrate that it 
does not appear in the table. Lines 50 to 52 show 
that at moment t=90, the 2001:0:4::/64 prefix is 
present in the R2 routing table, but with a metric 
of 16, that is to say, the R1 router has announced a 
route back to the R2 router about the existence of the 
2001:0:4::/64 prefix, but with an infinite cost; this is 
so R2 does not use R1 when it needs to send IPv6 
datagrams towards said prefix as destination. 

37 $ ./waf --run “scratch/ripng-training --sp
litHorizonStrategy=PoisonReverse 
--printRoutingTables=1 --linkdown=40”

38  ...
39 Node: 2 Time: 39s Ipv6ListRouting table 

Priority: 0 Protocol: ns3::RipNg
40 Destination Next Hop Flag Met Ref Use If
41 2001:0:1::/64 fe80::200:ff:fe00:3 UG 2 - - 1
42 2001:0:3::/64 fe80::200:ff:fe00:3 UG 2 - - 1
43 2001:0:6::/64 fe80::200:ff:fe00:8 UG 2 - - 2
44 2001:0:5::/64 fe80::200:ff:fe00:8 UG 2 - - 2
45 2001:0:2::/64 :: U 1 - - 1
46 2001:0:4::/64 :: U 1 - - 2
47 Node: 2 Time: 60s Ipv6ListRouting table
48 Destination Next Hop Flag Met Ref Use If
49 2001:0:4::/64 :: U 1 - - 2 (Lost entry)
50 Node: 2 Time: 90s Ipv6ListRouting table

51 Destination Next Hop Flag Met Ref Use If
52 2001:0:4::/64 fe80::200:ff:fe00:3 UG 16 - - 1 

(Poisoned entry)
53 ...
54  $ ./waf --run “scratch/ripng-training --splitHori

zonStrategy=SplitHorizon --linkdown=40”

55 Node: 2 Time: 90s Ipv6ListRouting table
56 Destination Next Hop Flag Met Ref Use If
57 2001:0:4::/64 :: U 1 - - 2 (Lost entry)
58 ...
59 $ ./waf --run “scratch/ripng-training --splitHori

zonStrategy=NoSplitHorizon --linkdown=40”

60 Node: 2 Time: 60s Ipv6ListRouting table
61 Destination Next Hop Flag Met Ref Use If
62 2001:0:4::/64 fe80::200:ff:fe00:3 UG 9 - - 1 

(Loop entry in R2)
63 ...
64 Node: 1 Time: 60s Ipv6ListRouting table 
65 Destination Next Hop Flag Met Ref Use If
66 2001:0:4::/64 fe80::200:ff:fe00:4 UG 8 - - 2 

(Loop entry in R1)

*Continue Figure 4.

*Continued Figure 4.

Figure 4. Routing tables for different Split Horizon strategies.

Lines 54 to 57 signify that when the used strategy 
is Split Horizon, at moment t=90 the R2 system 
routing table does not have the entry for the 
2001:0:4::/64 prefix (crossed out); that is to say, 
there is no poisoning for such prefix’s route. Lines 
59 to 66 show that when the strategy disables 
the Split Horizon characteristic, at moment t=60 
a routing loop arises; this is because R1 aims 
towards R2 and at the same time R2 aims towards 
R1 in order to reach the 2001:0:4::/64 destination. 
Although it is not shown in Figure 4, the latter 
loop also arises to reach the 2001:0:6::/64 prefix.

Figure 5 solely represents some of the captured 
and stored packets within the pcap file named 
P-r2-0. Line 68 is a heading which indicates that 
the following packets correspond to the enabled 
inverse poisoning strategy. Line 69 indicates that 
the RIPng packet number 98, present at moment 
t=43.02, is sent by R1 to R2 in order to indicate to it 
that it lost the entries to reach the 2001:0:6::/64 (net 
6) and 2001:0:4::/64 (net 4) networks; given that the 
announced cost is infinite (16). In line 70, R1 send 
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packet 104 to R2 at moment t=87.99 to inform that 
it knows how to reach all of the networks, except 
net 4, via a new route. In line 71, R2 sends packet 
106 to R1 at moment t=92.96, which poisons the 
routes announced by R1 on its way back. For 
the Split Horizon strategy, line 73 indicates that 
R2 sends packet 102 to R1 at moment t=92.96, 
which does not poison the routes R1 previously 
announced on its way back; it only announces net 

67 No Time Source Destination Info
68 Poison Reverse
69 98 43.02 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (16) 2001:0:4::/64 

(16) 2001:0:1::/64 (1) 2001:0:2::/64 (16)
70 104 87.99 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (12) 2001:0:4::/64 

(16) 2001:0:1::/64 (1) 2001:0:2::/64 (16) 
2001:0:3::/64 (1)

71 106 92.96 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:1::/64 (16) 2001:0:3::/64 (16) 2001:0:6::/64 
(16) 2001:0:5::/64 (16) 2001:0:2::/64 (16) 
2001:0:4::/64 (16)

72 Split Horizon
73 102 92.96 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:4::/64 (16)
74 No Split Horizon
75 98 43.02 fe80::200:ff:fe00:3 (R1) ff02::9 (R2) 2001:0:5::/64 (2) 2001:0:6::/64 (3) 2001:0:4::/64 (2) 

2001:0:1::/64 (1) 2001:0:2::/64 (1) 2001:0:3::/64 (1)
76 99 43.55 fe80::200:ff:fe00:4 (R2) ff02::9 (R1) 2001:0:6::/64 (4) 2001:0:5::/64 (3) 2001:0:4::/64 (3)

4 as having infinite cost. For the strategy in which 
Split Horizon is disabled, line 75 indicates that R1 
sends back routes to R2 which it had previously 
learnt from R2; net 4 with a cost of 2 and net 6 with 
a cost of 3. Line 76 indicates that R2 sends routes 
back to R1 which it had previously learnt from R1; 
net 4 with a cost of 3 and net 6 with a cost of 4. 
Lines 75 along with 76 indicate that when Split 
Horizon is disabled, routing loops can be created.

Figure 5. Traces from Wireshark for RIPng with different Split Horizon strategies (P-r2-0).

3.2 ICMPv6 control and error report message 

Lines 77 to 81 in Figure 6 represent some ICMPv6 
messages from the P-r2-0 file. Line 79 is a Destination 
unreachable ICMPv6 message (type 1) which R2 

sends to the n0 node. Line 80 is a Redirect ICMPv6 
message (type 137) which R2 sends R1. Finally, line 
81 is a Time exceeded ICMPv6 message (type 3) 
which R2 sends to the n0 node.

77 Time Source Destination Info
78 No Split Horizon
79 40:00 2001:0:2:0:200:ff:fe00:4 2001:0:1:0:200:ff:fe00:1 unreachable route 2001:0:6:0:200:ff:fe00:c, 

ICMPv6 type 1 
80 44:00 Mac: 00:00:00:00:00:04 

fe80::200:ff:fe00:4
Mac: 00:00:00:00:00:03 
2001:0:1:0:200:ff:fe00:1

redirect, 2001:0:6:0:200:ff:fe00:c to 
fe80::200:ff:fe00:3, ICMPv6 type 137

81 44.37 2001:0:2:0:200:ff:fe00:4 2001:0:1:0:200:ff:fe00:1 time exceeded in-transit for 
2001:0:6:0:200:ff:fe00:c, ICMPv6 type 3

Figure 6. Traces for ICMPv6 messages, No Split Horizon strategy.

3.3 Contribution and justification

Running the software generates information which 
allows students to contrast theoretical concepts of

RIPng protocol to the true behavior of said 
protocol within a simulated network. The software 
incorporates parameters which allow controlling 
various network events and defining the information 
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that is required to be obtained in a specific manner. 
The software is flexible since it allows different 
types of changes, as for example within network 
topology and IPv6 addresses which are desired to be 
assigned to the nodes.

4. Discussion

When the RIPng protocol is enabled within the 
intermediate systems, it was possible to verify that the 
routers send the routing tables periodically every 30 
seconds independently from the used Split Horizon 
strategy, and they also send the tables when there is 
a specific event, as usually is the reestablishment or 
tear down of a link. It was also evidenced that RIPng 
uses a 1 to 16 metric, which represents the hop 
count and also shows 15 as the maximum amount 
of hops. When the linkdown function is running, it 
is observed that, as a matter of fact, it is possible 
to control the desired moment to tear down the net 
4 link (by simulating a failure), and thus force the 
intermediate IPv6 network systems to recalculate 
the routing tables which allow to obtain new routes 
which take into account the other available links. 
When trying to revert the linkdown function with 
the purpose of uploading the net 4 link after having 
closed it, it was found that even though the net 4 
link uploads, the R2 (2001:0:4:0:200:ff:fe00:7) and 
R4 (2001:0:4:0:200:ff:fe00:8) interfaces, which 
are common to the net 4 link, only recover the 
local-link address scope (fe80::200:ff:fe00:7 and 
fe80::200:ff:fe00:8) and lose their global address, 
thus the 2001:0:4::/64 disappears from the routing 
tables; this suggests that a problem-to-solve has 
been identified within the implementation of the 
IPv6 protocol in NS-3. In terms of routing loop 
prevention, when contrasting the simulations used 
by the Poison Reverse strategies, Split Horizon and 
disabled Split Horizon, it is found that the most 
helpful one for said purpose is inverse poisoning, the 
intermediate one is Split Horizon and the worst is 
the one which disables Split Horizon. In the reverse 
poisoning strategy, during the first 120 seconds of 
simulation, 106 packets were captured in the P-r2-
0, and in the last packet it is evidenced that R2 
sends R1 the prefixes which it previously learnt 
from R1, but it sends them at an infinite cost, that 
is to say, it sends the poisoned routes. In the Split 

Horizon strategy, during the same 120 seconds of 
simulation, 102 packets were captured in the P-r2-0 
file, and it is evidenced that in the last packet, R2 
does not poison nor sends R1 the prefixes previously 
learnt from R1, it only sends the announcement of 
net 4 at infinite cost. Finally, in the strategy which 
disables Split Horizon, during the same 120 seconds 
of simulation, 2,971 packets were captured in the 
P-r2-0 file, and it is evidenced that after moments 
t=43.02 and t=43.55, along packets 98 and 99, the 
R1 and R2 systems initiate an interchange of route 
announcements which cause the setting up of the 
routing loops. It is also important to highlight that 
the elevated packet number is largely due to the fact 
that the IPv6 datagrams with destination to the n5 
node keep looping between R1 and R2, in addition 
to the time exceeded ICMPv6 messages (type 3) due 
to the hop count limit and redirect ICMPv6 messages 
(type 137) which are generated owing to this. 

The option for printing routing tables is a powerful 
tool given that it allows examining the routing 
tables of any IPv6 network system at any time. 
Specifically, at the moments of interest for this 
case: one second before the tear down, 20 seconds 
after the tear down and 50 seconds after the tear 
down. With the obtained output saved on a text file, 
it was possible to evince that the R1, R2, R3 and R4 
systems had the expected entry routes; it is worthy 
to note that it was possible to identify those entries 
that a system had lost, those which had arrived 
poisoned and those which caused routing loops. 
Meanwhile, the showPings option allows having a 
general idea about what is going on with the traffic 
that the n0 node sends to the n5 node.

Finally, when examining the captured packets 
with Wireshark, it is observed that the R1 and 
R2 systems send type 1 and type 3 ICMPv6 
messages to the n0 node in order to indicate 
unreachable destination and exceeded hop count 
limit, respectively. This indicates a standard IPv6 
protocol procedure by the time the router has lost 
a route or by the time the packet’s hop count has 
reached zero. Notwithstanding, type 137 ICMPv6 
messages were also observed, which are route 
correctors sent by R2 to R1 when routing loops 
arise; since R2 assumes that R1 has the best route 
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to reach the 2001:0:6::/64 network. This last part 
implies an incorrect operation of the NS-3 IPv6 
stack inasmuch as the source of the message is not 
from the R1 system, but instead from the n0 node.

5. Conclusions

With the developed software an IPv6 network can 
be simulated, made up of nodes which have the 
IPv6 stack installed and which are interconnected 
by CSMA link. Within the nodes which operate 
as routers, a RIPng routing protocol must be 
additionally installed. In the simulation, the moment 
of a specific link tear down can be programmed 
as well as the Split Horizon strategy which is 
going to be used in the RIPng protocol. Based on 
the information generated by the simulation, it is 
possible to analyze the node routing tables, the 
network convergence times and the finest traffic 
details of the interchanged packets. All of the above 
allows verifying the grounded concepts in regards 
to RIPng protocol.
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