Modelado de un Reactor Solar Fotocatalítico Heterogéneo con TiO2 para el Tratamiento de Agua Residual Contaminada con Albendazol

Resumen

El albendazol es un medicamento anthelmíntico con propiedades antiangiogénicas, lo que significa que inhibe el desarrollo de nuevos vasos sanguíneos. Esto implica un riesgo serio para el crecimiento del feto durante el embarazo. La fotocatálisis heterogénea se ha propuesto como alternativa para eliminar este contaminante emergente. En este estudio, un reactor fotocatalítico solar de collector parabólico compuesto (CPC) se modeló y simuló para describir la degradación del carbono orgánico total (TOC) del albendazol comercial.  El enfoque del modelo de seis flujos (SFM) se empleó para  calcular la velocidad local volumétrica de absorción de fotones (LVRPA) y se acopló con el modelo cinético de Langmuir-Hinshelwood (L-H) para describir la degradación fotocatalítica del contenido de TOC de el contaminante y los productos de su oxidación. Los parámetros del modelo L-H se estimaron a partir de datos experimentales obtenidos con una carga de catalizador de 0.6 g/l, un pH  inicial de 5.0 y tres diferentes concentraciones iniciales de TOC del albendazol comercial (159.95, 75.58 y 40 ppm). La constante cinética (kT) y la constant de adsorción (K1), calculadas a partir del ajuste de parámetros fueron 9.28×10-4 m1.5ppmW-0.5 s-1 y 3.02 × 10-2 ppm-1, respectivamente. El modelo se validó con resultados experimentales, alcanzando una reducción de TOC del 40% con la concentración más baja del contaminante. Simulando el proceso con diferentes cargas de catalizador, la máxima reducción de TOC se obtuvo con 0.21 g/L de TiO2.

Autores/as

  • Jose Colina-Marquez Universidad de Cartagena
  • María Margarita Guerra Universidad de Cartagena
  • Rodinson Arrieta- Perez Universidad de Puerto Rico

Descargas

La descarga de datos todavía no está disponible.

Palabras clave

Citas

(1) Alfano OM, Cassano, AE. Photoreactor Modeling: Applications to Advanced Oxidation Processes. Int J Chem React Eng [Internet]. 2008;6(1). Available from: https://www.degruyter.com/view/j/ijcre.2008.6.1/ijcre.2008.6.1.1617/ijcre.2008.6.1.1617.xml.

(2) Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Somma I Di. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B Environ [Internet]. 2015;170–171:90–123. Doi: 10.1016/j.apcatb.2014.12.050. Available from: https://www.sciencedirect.com/science/article/pii/S0926337315000028.

(3) Méndez-Arriaga F, Maldonado MI, Gimenez J, Esplugas S, Malato S. Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catal Today [Internet]. 2009;144(1–2):112–6. Doi: 10.1016/j.cattod.2009.01.028. Available from: https://www.sciencedirect.com/science/article/pii/S0920586109000492.

(4) Radjenović J, Sirtori C, Petrović M, Barceló D, Malato S. Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products. Appl Catal B Environ [Internet]. 2009;89(1–2):255–64. Doi: 10.1016/j.apcatb.2009.02.013. Available from: https://www.sciencedirect.com/science/article/pii/S0926337309000666#!.

(5) Puma GL, Puddu V, Tsang HK, Gora A, Toepfer B. Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorp. Appl Catal B Environ [Internet]. 2010;99(3–4):388–97. Doi: 10.1016/j.apcatb.2010.05.015. Available from: https://www.sciencedirect.com/science/article/pii/S0926337310002146.

(6) Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res [Internet]. 2009;43(2):363–80. Doi: 10.1016/j.watres.2008.10.047. Available from: https://www.sciencedirect.com/science/article/pii/S0043135408005010.

(7) Bistoletti M, Moreno L, Alvarez L, Lanusse C. Multiresidue HPLC method to measure benzimidazole anthelmintics in plasma and egg from laying hens. Evaluation of albendazole metabolites residue profiles. Food Chem [Internet]. 2011;126(2):793–800. Doi: 10.1016/j.foodchem.2010.11.084. Available from: https://www.sciencedirect.com/science/article/pii/S0308814610015025.

(8) Pourgholami MH, Khachigian LM, Fahmy RG, Badar S, Wang L, Chu SWL, et al. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem Biophys Res Commun [Internet]. 2010;397(4):729–34. Available from: http://dx.doi.org/10.1016/j.bbrc.2010.06.019.

(9) Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol [Internet]. 2002;266(3–4):175–89. Doi: 10.1016/S0022-1694(02)00165-8. Available from: https://www.sciencedirect.com/science/article/pii/S0022169402001658.

(10) Méndez-Arriaga F, Esplugas S, Giménez J. Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res [Internet]. 2010;44(2):589–95. Doi: 10.1016/j.watres.2009.07.009. Available from: https://www.sciencedirect.com/science/article/pii/S0043135409004667.

(11) Papamija M, Sarria V. Degradación fotocatalítica del ibuprofeno empleando dióxido de titanio. Rev Ing [Internet]. 2010;(31):47–53. Doi: 10.16924/riua.v0i31.211. Available from: https://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/211.

(12) Cassano AE, Alfano OM. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal Today [Internet]. 2000;58(2–3):167–97. Available from: https://www.sciencedirect.com/science/article/pii/S0920586100002510.

(13) Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R. Photocatalysis in water environments using artificial and solar light. Catal Today [Internet]. 2000;58(2–3):199–230. Available from: https://www.sciencedirect.com/science/article/pii/S0920586100002522.

(14) Toepfer B, Gora A, Puma GL. Photocatalytic oxidation of multicomponent solutions of herbicides: Reaction kinetics analysis with explicit photon absorption effects. Appl Catal B Environ [Internet]. 2006;68(3–4):171–80. Available from: https://www.sciencedirect.com/science/article/pii/S0926337306003171.

(15) Colina-Márquez J, Machuca-Martínez F, Puma GL. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: Photoreactor modeling and reaction kinetics constants independent of radiation field. Environ Sci Technol [Internet]. 2009;43(23):8953–60. Available from: https://pubs.acs.org/doi/abs/10.1021/es902004b.

(16) Angel-Mueses M, Machuca-Martinez F, Puma GL. Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors. Chem Eng J [Internet]. 2013;215–216:937–47. Available from: https://www.sciencedirect.com/science/article/pii/S1385894712015616.

(17) Castilla-Caballero D, Machuca-Martínez F, Bustillo-Lecompte C, Colina-Márquez J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling, and Scaling-Up of Photoreactors. Catalyst [Internet]. 2018;8(5):179. Doi: 10.3390/catal8050179. Available from: https://www.mdpi.com/2073-4344/8/5/179.

(18) Colina-Márquez J, López-Vásquez AF, Machuca-Martínez F. Modeling of direct solar radiation in a compound parabolic collector (CPC) with the Ray Tracing tecnique. DYNA [Internet]. 2010;77(163):132–40. Available from: https://revistas.unal.edu.co/index.php/dyna/article/view/25545/26026.

(19) Malato S. Photocatalytic reactors for the treatment of liquid wastewater in the presence of solar irradiation. In: 1st seminar of “Advanced Oxidation Methods of the Treatment of Liquid and Air Waste” [Internet]. Greece: Aristotle University of Thessaloniki; 2004. Available from: https://www.psa.es/en/projects/cadox/documents/Solarphotoreactors.pdf.

(20) Colina-Márquez J, López-Vásquez AF, Díaz D, Rendón A, Machuca-Martínez F. Photocatalytic Treatment of A Dye Polluted Industrial Effluent With A Solar Pilot-Scale CPC Reactor. J Adv Oxid Technol [Internet]. 2016;12(1):93–99. Available from: https://www.degruyter.com/view/j/jaots.2009.12.issue-1/jaots-2009-0111/jaots-2009-0111.xml.

(21) Puma GL, Brucato A. Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models. Catal Today [Internet]. 2007;122(1–2):78–90. Doi: 10.1016/j.cattod.2007.01.027. Available from: https://www.sciencedirect.com/science/article/pii/S092058610700051X#!.

(22) Chu C, Churchill S. Multiple scattering by randomly distributed obstacles-Methods of solution. IRE Trans Antennas Propag [Internet]. 1956;4(2):142–8. Doi: 10.1109/TAP.1956.1144373. Available from: https://ieeexplore.ieee.org/document/1144373.

(23) Blanco JG, Malato S, A EC, Bandala ER, Gelover S, Leal T. Purificación de aguas por fotocatálisis heterogénea: Estado del arte. In: Blesa M, editor. CYTED - Eliminación de contaminantes por fotocatálisis heterogénea. Buenos Aires: Universidad Nacional de General San Martín; 2001. p. 51–75.

(24) Colina-Márquez J, Machuca-Martínez F, López-Vásquez AF. Fotodegradación catalítica del pesticida 2,4-d Amina 4. In Seminario Internacional: Gestión integrada de servicios relacionados con el agua en asentamientos nucleados. Santiago de Cali: Universidad del Valle; 2005.

(25) Machuca-Martínez F, Angel-Mueses M, Colina-Márquez J, Puma GL. Photocatalytic Reactor Modeling. In: Schneider J, Bahnemann D, Ye J, Puma GL, Dionysiou DD, editors. Photocatalysis: Fundamentals and Perspectives - Energy and Environment Series [Internet]. Royal Society of Chemistry; 2016. p. 388–424. Doi: 10.1039/9781782622338-00388. Available from: https://pubs.rsc.org/en/content/chapter/bk9781782620419-00388/978-1-78262-041-9.

(26) Angel-Mueses M, Machuca-Martínez F, Hernández-Ramirez A, Puma GL. Effective radiation field model to scattering – Absorption applied in heterogeneous photocatalytic reactors. Chem Eng J [Internet]. 2015;279:442–51. Doi: 10.1016/j.cej.2015.05.056. Available from: https://www.sciencedirect.com/science/article/pii/S1385894715007202.

(27) Ochoa-Gutiérrez KS, Tabares-Aguilar E, Angel-Mueses M, Machuca-Martínez F, Puma GL. A Novel Prototype Offset Multi Tubular Photoreactor (OMTP) for solar photocatalytic degradation of water contaminants. Chem Eng J [Internet]. 2018;341:628–38. Doi: 10.1016/j.cej.2018.02.068. Available from: https://www.sciencedirect.com/science/article/pii/S1385894718302705.

(28) Colina-Márquez J, Machuca-Martínez F, Puma GL. Radiation Absorption and Optimization of Solar Photocatalytic Reactors for Environmental Applications. Environ Sci Technol [Internet]. 2010;44(13):5112–20. Doi: 10.1021/es100130h. Available from: https://pubs.acs.org/doi/abs/10.1021/es100130h.

Publicado
2019-08-02
| 141 |
Cómo citar
Colina-Marquez, J., Guerra, M., & Arrieta- Perez, R. (2019). Modelado de un Reactor Solar Fotocatalítico Heterogéneo con TiO2 para el Tratamiento de Agua Residual Contaminada con Albendazol. INGENIERÍA Y COMPETITIVIDAD, 21(2), 1-10. https://doi.org/10.25100/iyc.v21i2.8105