Evaluación del sistema de drenaje urbano oriental de Cali ante escenarios de variabilidad climática apoyados en la simulación con el Modelo de Gestión de Aguas Pluviales

Resumen

La ocurrencia de eventos hidroclimatológicos extremos asociados a la variabilidad climática y el cambio climático, sumados al desarrollo deficiente de los sistemas de drenaje urbano, ha potenciado la ocurrencia de inundaciones en las ciudades. En este estudio se analiza el comportamiento hidráulico del sistema de drenaje urbano en el oriente de Cali durante la ocurrencia de eventos de precipitación máxima apoyado en el modelo Storm Water Management Model. Se desarrollaron tres escenarios climáticos de simulación: (i) Escenario actual con un tiempo de retorno de 2 y 10 años, (ii).Escenario climático del año 2030 y (iii) Escenario climático del año 2040. El modelo presentó un grado de calibración aceptable, con un número de Nash-Sutcliffe superior a 0.5 en todos los eventos simulados, de manera que los resultados obtenidos describen apropiadamente el comportamiento de la escorrentía superficial en términos de resolución espacial y temporal. De esta forma se identificaron puntos críticos del sistema de drenaje, potencialmente útiles en los procesos de planeación de obras hidráulicas, que conduzcan al mejoramiento del comportamiento hidráulico del sistema y la protección de la vida y bienes de los habitantes de la ciudad.

Autores/as

  • Yesid Carvajal Universidad del Valle
  • Camilo Ocampo Universidad del Valle
  • Luis E. Peña Universidad de Ibague

Descargas

La descarga de datos todavía no está disponible.

Palabras clave

Citas

(1) Avila-Diaz J, Carvajal-Escobar Y, Gutiérrez S. Análisis de la influencia de El Niño y La Niña en la oferta hídrica mensual de la cuenca del río Cali. Tecnura [Internet]. 2014;18(41):120–33. Doi: 10.14483/udistrital.jour.tecnura.2014.3.a09. Available from: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/7027/8707.

(2) OSSO C. DesInventar Project [Internet]. 1994. [Consultado 2017/03/09]. Available from: https://www.desinventar.org/es/database.

(3) Torres M. Portafolio de medidas de adaptación y mitigación del cambio climático [Internet]. Cali, Colombia: Corporación Autónoma Regional de Valle del Cauca CVC, Centro Internacional de Agricultura Tropical CIAT; 2015. 84 p. Available from: https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/portafolio_de_estrategias_de_adaptacion_-_santiago_de_cali_0.pdf.

(4) Cardona-Guerrero F, Avila-Diaz J, Carvajal-Escobar Y, Jimenez H. Tendencias en las series de precipitación en dos cuencas torrenciales andinas del Valle del Cauca (Colombia). TecnoLógicas [Internet]. 2014;17(32):85–95. Doi: 10.22430/22565337.208. Available from: https://revistas.itm.edu.co/index.php/tecnologicas/article/view/208/214.

(5) Poveda G, Mesa O. Las fases extremas del fenómeno ENSO (El Niño y La Niña) y su influencia sobre la hidrología de Colombia. Tecnol y Ciencias del Agua [Internet]. 2015;11(1):21–37. Available from: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/765/726.

(6) Poveda G, Vélez JI, Mesa O, Hoyos C, Mejía J, Barco OJ, et al. Influencia de fenómenos macroclimáticos sobre el ciclo anual de la hidrología Colombiana: Cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol Colomb [Internet]. 2002;(6):121–30. Available from: http://gfnun.unal.edu.co/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero06/06_13.pdf

(7) Waylen P, Poveda G. El Nino-Southern 9 Oscillation and aspects of western South American hydro-climatology. Hydrol Process [Internet]. 2002;16(6):1247–60. Doi: 10.1002/hyp.1060. Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.1060.

(8) Franco AS. Momento y contexto de la violencia en Colombia. Revista Cubana de Salud Pública [Internet]. 2002; 29(1): 18-36.

(9) Zoppou C. Review of urban storm water models. Environ Model Softw [Internet]. 2001;16(3):195–231. Doi: 10.1016/S1364-8152(00)00084-0. Available from: https://www.sciencedirect.com/science/article/pii/S1364815200000840.

(10) Rossman LA, Huber WC. Storm Water Management Model Reference Manual Volume I – Hydrology (revised)(EPA/600/R-15/162A) [Internet]. Vol. I, U.S. Environmental Protection Agency. Washington, DC; 2016 [Consulted 2017/07/20]. Available from: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=309346.

(11) Puertas-Orozco O, Carvajal-Escobar Y, Quintero-Angel M. Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia. DYNA [Internet]. 2011;78(169):112–20. Available from: https://revistas.unal.edu.co/index.php/dyna/article/view/21330/26516.

(12) Avila-Diaz J, Carvajal-Escobar Y, Sedano K. Análisis De Aspectos Que Incrementan El Riesgo De Inundaciones En Colombia. Luna Azul [Internet]. 2013;(37):219–38. Doi: 10.17151/luaz.2013.37.13. Available from: http://190.15.17.25/lunazul/downloads/Lunazul37_14.pdf.

(13) Puertas-Orozco O, Carvajal-Escobar Y. Incidencia de El Niño-Oscilación del Sur en la precipitación y la temperatura del aire en colombia, utilizando el Climate Explorer. Rev Científica Ing y Desarro [Internet]. 2011;23(23):104-118–118. Available from: http://rcientificas.uninorte.edu.co/index.php/ingenieria/article/view/2097/1346.

(14) Poveda G. La Hidroclimatología de Colombia: Una Síntesis Desde la Escala Inter-Decadal Hasta la Escala Diura por Ciencias de La Tierra. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat [Internet]. 2004;28(107):201–22. Available from: https://www.uninorte.edu.co/documents/266486/0/Poveda_2004.pdf.

(15) Materón H, Carvajal-Escobar Y. Curvas de Intensidad, Frecuencia y Duración de Lluvias para Cali: Actualización y Consideraciones. Ing y Compet [Internet]. 1997;1(1):29–35. Doi: 10.25100/iyc.v1i1.2362. Available from: http://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/2362/3112.

(16) Wang K-H, Altunkaynak A. Comparative Case Study of Rainfall-Runoff Modeling between SWMM and Fuzzy Logic Approach. J Hydrol Eng [Internet]. 2012;17(2):283–91. Doi: 10.1061/(ASCE)HE.1943-5584.0000419. Available from: https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29HE.1943-5584.0000419.

(17) Bhaduri B, Minner M, Tatalovich S, Harbor J. Long-Term Hydrologic Impact 1 0 of Urbanization: A Tale of Two Models. J Water Resour Plan Manag [Internet]. 2001;127(1):13–9. Doi: 10.1061/(ASCE)0733-9496(2001)127:1(13). Available from: https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%290733-9496%282001%29127%3A1%2813%29.

(18) Hsu MH, Chen SH, Chang TJ. Inundation simulation for urban drainage basin with storm sewer system. J Hydrol [Internet]. 2000;234(1–2):21–37. Doi: 10.1016/S0022-1694(00)00237-7. Available from: https://www.sciencedirect.com/science/article/pii/S0022169400002377

(19) SAINT-VENANT AJC, BARRÉ D, Saint-Cyr J. Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et è l’introduction des marées dans leur lit. C. R. Acad Sci Paris [Internet]. 1871;73:237–40. Available from: https://www.sciencedirect.com/journal/comptes-rendus-mathematique.

(20) Butler D, Davies J, Nicholson T. Urban Drainage [Internet]. 2nd Edition. London: CRC Press; 2004. p. 566. Doi: 10.1201/b12810. Available from: https://www.taylorfrancis.com/books/9780429217357.

(21) Rossman LA. Epa SWMM 5.0 Quality assurance report: Dynamic Wave Flow Routing [Internet]. Washington, DC; 2006. Available from: https://nepis.epa.gov/Exe/ZyPDF.cgi/P10089TF.PDF?Dockey=P10089TF.PDF.

(22) Horton RE. The Role of Infiltration in The Hydrologic Cycle. Eos, Trans Am Geophys Union [Internet]. 1933;14(1):446–60. Doi: 10.1029/TR014i001p00446. Available from: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/TR014i001p00446.

(23) Peña JA. Evaluación de los efectos en las propiedades hidrodinámicas de un suelo inceptisol y en el desarrollo de un cultivo de caña de azúcar (saccharum officinarum l.) por la aplicación de biosólidos provenientes de la PTAR Cañaveralejo de Cali. Ing Recur Nat y del Ambient [Internet]. 2012;(11):51–62. Available from: http://revistaeidenar.univalle.edu.co/revista/ejemplares/11/g.htm.

(24) Nash J, Sutcliffe J. River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol [Internet]. 1970;10(3):282–90. Doi: 10.1016/0022-1694(70)90255-66. Available from: https://www.sciencedirect.com/science/article/pii/0022169470902556.

(25) EMCALI EM de C. Normas para el diseño de sistemas de alcantarillado [Internet]. Cali, Colombia; 1999. Available from: https://www.emcali.com.co/web/acueducto/normas-1999.

(26) Ortíz JCR, Muñoz MF. Diseño Hidráulico de Sistemas de Drenaje Dual a través del Modelo SWMM. Rev Ing Hidráulica y Ambient [Internet]. 2013;34(2):103–17. Available from: http://riha.cujae.edu.cu/index.php/riha/article/view/156/153.

(27) Sánchez LA. Modelo hidrológico-hidráulico para evaluar un sistema de drenaje urbano en zonas planas. Rev Ing Hidráulica y Ambient [Internet]. 1 1 2009;30(3):3-10. Available from: http://riha.cujae.edu.cu/index.php/riha/article/view/65/68.

(28) Bolinaga J. Drenaje Urbano. Caracas, Venezuela: Instituto Nacional de Obras Sanitarias; 1979. 470 p.

(29) Rojas E, Arce B, Peña A, Boshell F, Ayarza M. Cuantificación e interpolación de tendencias locales de temperatura y precipitación en zonas alto andinas de Cundinamarca y Boyacá (Colombia). Cienc y Tecnol Agropecu [Internet]. 2010;11(2):173-82. Doi: 10.21930/rcta.vol11_num2_art:209. Available from: http://revistacta.agrosavia.co/index.php/revista/article/view/209/215.

(30) Zongxing L, He Y, Wang P, Theakstone W, An W, Wang X, et al. Changes of daily climate extremes in southwestern China during 1961–2008. Glob Planet Change [Internet]. 2012;80–81:255–72. Doi: 10.1016/j.gloplacha.2011.06.008. Available from: https://www.sciencedirect.com/science/article/pii/S092181811100110X.

(31) Skansi M de los M, Brunet M, Sigró J, Aguilar E, Arevalo J, Bentancur O, et al. Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change [Internet]. 2013;100:295–307. Doi: 10.1016/j.gloplacha.2012.11.004. Available from: https://www.sciencedirect.com/science/article/pii/S0921818112002172

(32) CDKN AC y D. El Quinto Reporte de Evaluación del IPCC ¿Qué implica para Latinoamérica? [Internet]. Alianza Clima y Desarrollo. 2014. Available from: https://cdkn.org/wp-content/uploads/2014/12/INFORME-del-IPCC-Que-implica-para-Latinoamerica-CDKN.pdf.

(33) IDEAM, PNUD, MADS, DNP, CANCILLERÍA. Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Científica para los Tomadores de Decisione- Enfoque Nacional - Departamental: Tercera Comunicación Nacional de Cambio Climático. [Internet]. Vol. 13, BMC Genetics. 2015. Available from: http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf.

(34) CVC, CIAT, DAGMA. Plan de adaptación y mitigación al cambio climático para Santiago de Cali [Internet]. [Recurso electrónico]. 2015. Available from: http://web1.cali.gov.co/descargar.php?idFile=9461&plantilla=admin.

(35) Zhang X, Yang F, Canada E. RClimDex (1.0) User Manual [Internet]. Ontario, Canada: Climate Research Division Environment Canada; 2004. Report No.: 1.1. Available from: http://etccdi.pacificclimate.org/software.shtml.

(36) Avila A, Cardona-Guerrero F, Carvajal-Escobar Y, Justino F. Recent precipitation trends and floods in the Colombian Andes. Water (Switzerland) [Internet]. 2019;11(2):1–22. Doi: 10.3390/w11020379. Available from: https://www.mdpi.com/2073-4441/11/2/379

Publicado
2019-08-02
| 184 |
Cómo citar
Carvajal, Y., Ocampo, C., & Peña, L. E. (2019). Evaluación del sistema de drenaje urbano oriental de Cali ante escenarios de variabilidad climática apoyados en la simulación con el Modelo de Gestión de Aguas Pluviales. INGENIERÍA Y COMPETITIVIDAD, 21(2), 1-11. https://doi.org/10.25100/iyc.v21i2.8046