Cálculo de las integrales de temperatura usadas en el procesamiento de datos de análisis te rmogravimétr i

Resumen

There is no standard procedure for calculating the generalized temperature integral, instead myriads of different approximations to it are applied in the processing of thermogravimetric analysis data. This work presents an integration procedure based on the Simpson rule that generates exact values of the generalized temperature integral. It also reviews the available representations of the temperature integral in power series, and presents the conversion of its generalized form into the form of special functions. From the comparison with the exact values from integration it was concluded that for argument values of practical interest the generalized temperature integral is best computed as the incomplete gamma function.

Autores/as

  • Javier Ignacio Carrero Universidad Nacional de Colombia, sede Manizales
  • Andrés Felipe Rojas Universidad Nacional de Colombia, sede Manizales

Descargas

La descarga de datos todavía no está disponible.

Palabras clave

Citas

Flynn J. The ‘Temperature Integral’ — Its use and abuse. Thermochim Acta [Internet]. 1997;300(1–2):83–92. Avalaible from: https://www.sciencedirect.com/science/article/abs/pii/S0040603197000464.

(2) Galwey A. Is the science of thermal analysis kinetics based on solid foundations?: A literature appraisal. Thermochim Acta [Internet]. 2004;413(1–2):139–83. Doi: 10.1016/j.tca.2003.10.013. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0040603103005422?via%3Dihub.

(3) Órfão J. Review and evaluation of the approximations to the temperature integral. AIChE J [Internet]. 2007;53(11):2905–15. Doi: 10.1002/aic.11296. Available from: https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.11296.

(4) Carrero J, Rojas A. A unified integral interpretation of thermal analysis data. Ing y Compet [Internet]. 2016;18(1):102–12. Available from: http://revistas.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/2181.

(5) Vyazovkin S, Burnham A, Criado J, Pérez-Maqueda L, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta [Internet]. 2011;520(1–2):1–19. Available from: https://www.sciencedirect.com/science/article/pii/S0040603111002152.

(6) Vyazovkin S, Chrissafis K, Di Lorenzo M, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta [Internet]. 2014;590:1–23. Available from: https://www.sciencedirect.com/science/article/pii/S0040603114002573.

(7) Portnyagin AS, Golikov AP, Drozd VA, Avramenko VA. An alternative approach to kinetic analysis of temperature-programmed reaction data. RSC Adv [Internet]. 2018;8(6):3286–95. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra09848k#!divRelatedContent&articles.

(8) Hammam MAS, Abdel-Rahim MA, Hafiz MM, Abu-Sehly AA. New combination of non-isothermal kinetics-revealing methods. J Therm Anal Calorim [Internet]. 2017;128(3):1391–405. Available from: https://link.springer.com/article/10.1007/s10973-017-6086-x.

(9) Holba P. Temperature dependence of activation energy of endothermic processes and related imperfections of non-isothermal kinetic evaluations. J Therm Anal Calorim [Internet]. 2017;129(1):609–14. Available from: https://link.springer.com/article/10.1007/s10973-017-6088-8.

(10) Šesták J. The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta [Internet]. 2015;611:26–35. Available from: https://www.sciencedirect.com/science/article/pii/S0040603115001707.

(11) Šesták J. Are nonisothermal kinetics fearing historical Newton’s cooling law, or are just afraid of inbuilt complications due to undesirable thermal inertia? J Therm Anal Calorim [Internet]. 2018;134(3):1385–93. Available from: https://doi.org/10.1007/s10973-018-7705-x.

(12) Burnham AK. Use and misuse of logistic equations for modeling chemical kinetics. J Therm Anal Calorim [Internet]. 2017;127(1):1107–16. Available from: https://link.springer.com/article/10.1007/s10973-015-4879-3.

(13) Criado J, Pérez-Maqueda LA, Sánchez-Jiménez PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim [Internet]. 2005;82(3):671–5. Available from: https://link.springer.com/article/10.1007/s10973-005-0948-3.

(14) Deng C, Cai J, Liu R. Kinetic analysis of solid-state reactions: Evaluation of approximations to temperature integral and their applications. Solid State Sci [Internet]. 2009;11(8):1375–9. Available from: http://dx.doi.org/10.1016/j.solidstatesciences.2009.04.009.

(15) Heal GR. Evaluation of the function p(X), used in non-isothermal kinetics, by a series of Chebyshev polynomials. Instrum Sci Technol [Internet]. 1999;27(5):367–87. Available from: https://www.tandfonline.com/doi/abs/10.1080/10739149908085873.

(16) Vallet P. Tables numériques permettant l’intégration des constantes de vitesse par rapport à la température [Internet]. Vol. 18, Chemical Engineering Science. Elsevier; 1961. 114 p. Available from: https://www.sciencedirect.com/science/article/pii/000925096380007X.

(17) Cai J, Liu R. Dependence of the frequency factor on the temperature: A new integral method of nonisothermal kinetic analysis. J Math Chem [Internet]. 2008;43(2):637–46. Available from: https://link.springer.com/article/10.1007/s10910-006-9215-5.

(18) Cai J, Wu W, Liu R. Isoconversional kinetic analysis of complex solid-state processes: Parallel and successive reactions. Ind Eng Chem Res [Internet]. 2012;51(49):16157–61. Available from: https://pubs.acs.org/doi/abs/10.1021/ie302160d.

(19) Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci [Internet]. 1996;36(1):42–5. Available from: https://pubs.acs.org/doi/abs/10.1021/ci950062m.

(20) Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem [Internet]. 2000;72(14):3171–5. Available from: https://pubs.acs.org/doi/abs/10.1021/ac000210u.

(21) Flannery BP, Teukolsky S, Press WH, Vetterling W. Numerical recipes in FORTRAN The art of scientific computing [Internet]. Second Edition. New York: Cambridge University Press; 1993. 933 p. Available from: https://www.cambridge.org/es/academic/subjects/mathematics/numerical-recipes/numerical-recipes-fortran-example-book-art-scientific-computing?format=PB.

(22) Weisstein E. Simpson’s 3/8 Rule [Internet]. Wolfram MathWorld. [Consulted 2018/12]. Available from: http://mathworld.wolfram.com/Simpsons38Rule.html.

(23) Zuras D, Cowlishaw M. IEEE Standard for Floating-Point Arithmetic - Std 754TM-2008 [Internet]. New York: IEEE Institute of Electrical and Electronics Engineers; 2008. 70 p. Doi: 10.1109/ieeestd.2008.4610935. Available from: https://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

(24) Wikipedia. Double precision floating-point format [Internet] [Consulted in 2018/12]. Available from: https://en.wikipedia.org/wiki/Double-precision_floating-point_format.

(25) Moler C. Floating Points MATLAB News and Notes [Internet]. 1996. Available from: https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf.

(26) Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim [Internet]. 1977;11(3):445–7. Available from: https://link.springer.com/article/10.1007/BF01903696.

(27) Flynn J, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand (1934) [Internet]. 1966;70a(6):487–524. Available from: https://nvlpubs.nist.gov/nistpubs/jres/70A/jresv70An6p487_A1b.pdf.

(28) Zsakó J, Zsakó-Jr J. Kinetic analysis of thermogravimetric data. J Therm Anal Calorim [Internet]. 1980;19(2):333–45. Available from: https://link.springer.com/article/10.1007/BF01915809.

(29) Farjas J, Roura P. Isoconversional analysis of solid state transformations A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim [Internet]. 2011;105(3):757–66. Available from: https://link.springer.com/article/10.1007/s10973-011-1446-4.

(30) Bleistein N, Handelsman RA. Asymptotic Expansions of Integrals. New York: Holt, Rinehart, and Winston; 1975. 425 p.

(31) Cody W, Thacher HC. Rational Chebyshev Approximations for the Exponential Integral E1 (x). Math Comput [Internet]. 1968;22(103):641–9. Available from: https://www.ams.org/journals/mcom/1968-22-103/S0025-5718-1968-0226823-X/.

(32) Abramowitz M. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Washington, DC: National Bureau of Standards; 1964. 1046 p.

(33) Wolfram Research I. Incomplete gamma function [Internet]. [Consulted 2018/12]. Available from: http://functions.wolfram.com/GammaBetaErf/Gamma2/.

(34) Cody W, Thacher HC. Chebyshev Approximations for the Exponential Integral Ei(x). Math Comput [Internet]. 1969;23(106):289–303. Available from: https://www.ams.org/journals/mcom/1969-23-106/S0025-5718-1969-0242349-2/.

Publicado
2019-08-02
| 110 |
Cómo citar
Carrero, J., & Rojas, A. (2019). Cálculo de las integrales de temperatura usadas en el procesamiento de datos de análisis te rmogravimétr i. INGENIERÍA Y COMPETITIVIDAD, 21(2), 1-10. https://doi.org/10.25100/iyc.v21i2.7450