Contenido principal del artículo

Autores

 


Los edificios representan una proporción significativa de las emisiones totales de energía y carbono en todo el mundo y desempeñan un papel importante en la formulación de estrategias de desarrollo sostenible. Varios países han adoptado o consideran la posibilidad de establecer Edificios de Energías Cero (EEC) como sus futuros objetivos energéticos para aliviar los problemas relacionados con el agotamiento de los recursos energéticos y el deterioro del medio ambiente. El objetivo de esta contribución es exponer las tendencias investigativas en tecnologías de EEC.
Para alcanzar este objetivo, la contribución se sostiene en una revisión de artículos, realizada en el directorio
académico Scopus. La información extraída de dicho catalogo fue procesada en el software VOSviewer, mediante el cual se realizó la minería de texto, mapa de términos y redes de acción investigativa. El consumo de energía y recursos de los edificios, desde la etapa de diseño; se ha convertido en el tema de investigación más trabajado a partir del 2015. Las contribuciones detectan nichos de investigación en tres áreas: análisis del costo del ciclo de vida, impacto ambiental, y políticas sociales. 

1.
Bravo Hidalgo D, Baez-Hernandez A. Tecnologías de edificios de energías cero. Una revisión. inycomp [Internet]. 2 de agosto de 2019 [citado 28 de marzo de 2024];21(2):1-11. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/7150

(1) Hidalgo DB. Climatización Solar De Edificaciones. Rev Cent Azúcar [Internet]. 2015;42(2):72–82. Available from: http://centroazucar.uclv.edu.cu/media/articulos/PDF/2015/2/8 Vol 42 No2 2015.pdf.

(2) Li Q, Zheng C, Shirazi A, Bany-Mousa O, Moscia F, Scott JA, et al. Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications. Appl Energy [Internet]. 2017;190:1159–73. Doi: 10.1016/j.apenergy.2017.01.040. Available from: https://www.sciencedirect.com/science/article/pii/S030626191730048X.

(3) Owen NA, Inderwildi OR, King DA. The status of conventional world oil reserves-Hype or cause for concern? Energy Policy [Internet]. 2010;38(8):4743–9. Doi: 10.1016/j.enpol.2010.02.026. Available from: https://www.sciencedirect.com/science/article/pii/S0301421510001072.

(4) Ma L, Allwood JM, Cullen JM, Li Z. The use of energy in China: Tracing the flow of energy from primary source to demand drivers. Energy [Internet]. 2012;40(1):174–88. Doi: 10.1016/j.energy.2012.02.013. Available from: https://www.sciencedirect.com/science/article/pii/S0360544212001089.

(5) Chai Q, Zhang X. Technologies and policies for the transition to a sustainable energy system in China. Energy [Internet]. 2010; 35 (10): 3995-4002. Doi: 10.1016/j.energy.2010.04.033. Available from: https://www.sciencedirect.com/science/article/pii/S0360544210002409.

(6) Wong SL, Wan KW, Lam TN. Artificial neural networks for energy analysis of office buildings with daylighting. Applied Energy [Internet]. 2010; 87(2): 551-7. Doi: 10.1016/j.apenergy.2009.06.028. Available from: https://www.sciencedirect.com/science/article/pii/S0306261909002669.

(7) Levermore G. A Review of the IPCC Assessment Report Four, Part 1: the IPCC Process and Greenhouse Gas Emission Trends from Buildings Worldwide. Building Services Engineering Research and Technology [Internet]. 2008; 29 (4): 349-61. Doi: 10.1177/0143624408096262. Available from: https://journals.sagepub.com/doi/abs/10.1177/0143624408096263.

(8) Alanne K, Cao S. Zero-Energy Hydrogen Economy for Buildings and Communities Including Personal Mobility. Renewable and Sustainable Energy Reviews [Internet]. 2017; 71: 697-711. Doi: 10.1016/j.rser.2016.12.098. Available from: https://doi.org/10.1016/j.rser.2016.12.098.

(9) Nouvel R, Zirak M, Coors V, Eicker U. The Influence of Data Quality on Urban Heating Demand Modeling Using 3D City Models. Computers, Environment and Urban Systems [Internet]. 2017; 64: 68-80. Doi: 10.1016/j.compenvurbsys.2016.12.005. Available from: http://dx.doi.org/10.1016/j.compenvurbsys.2016.12.005.

(10) Clift R. Climate Change and Energy Policy: the Importance of Sustainability Arguments. Energy [Internet]. 2007; 32 (4): 262-8. Doi: 10.1016/j.energy.2006.07.031. Available from: https://www.sciencedirect.com/science/article/pii/S0360544206002192?via%3Dihub.

(11) Rösch C, Bräutigam KR, Kopfmüller J, Stelzer V, Lichtner P. Indicator system for the sustainability assessment of the German energy system and its transition. Energy, Sustainability and Society [Internet]. 2017; 7 (1). Doi: 10.1186/s13705-016-0103-y. Available from: https://energsustainsoc.biomedcentral.com/articles/10.1186/s13705-016-0103-y.

(12) Shahzad MK, Zahid A, Rashid T, Rehan MA, Ali M, Ahmad M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy [Internet]. 2017; 106: 264-73. Doi: 10.1016/j.renene.2017.01.033. Available from: http://dx.doi.org/10.1016/j.renene.2017.01.033.

(13) Paiho S, Hoang H, Hukkalainen M. Energy and emission analyses of solar assisted local energy solutions with seasonal heat storage in a Finnish case district. Renewable Energy [Internet]. 2017; 107: 147-55. Doi: 10.1016/j.renene.2017.02.003. Available from: https://doi.org/10.1016/j.renene.2017.02.003.

(14) Muresan AA, Attia S. Energy efficiency in the Romanian residential building stock: A literature review. Renewable and Sustainable Energy Reviews [Internet]. 2017; 74: 349-63. Doi: 10.1016/j.rser.2017.02.022. Available from: https://www.sciencedirect.com/science/article/pii/S1364032117302241?via%3Dihub.

(15) Koo C, Hong T, Jeong K, Ban C, Oh J. Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses. Energy [Internet]. 2017; 124: 382-96. Doi: 10.1016/j.energy.2017.02.088. Available from: https://doi.org/10.1016/j.energy.2017.02.088.

(16) Murley LD, Gandy SK, Huss JM. Teacher candidates research, teach, and learn in the nation's first net zero school. The Journal of Environmental Education [Internet]. 2017; 48 (2):121-9. Doi: 10.1080/00958964.2016.1141747. Available from: https://www.tandfonline.com/doi/abs/10.1080/00958964.2016.1141747.

(17) Asaee SR, Ugursal VI, Beausoleil-Morrison I. Techno-economic feasibility evaluation of air to water heat pump retrofit in the Canadian housing stock. Applied Thermal Engineering [Internet]. 2017; 111: 936-49. Doi: 10.1016/j.applthermaleng.2016.09.117. Available from: https://doi.org/10.1016/j.applthermaleng.2016.09.117.

(18) Fiorentini M, Wall J, Ma Z, Braslavsky JH, Cooper P. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy [Internet]. 2017; 187: 465-79. Doi: 10.1016/j.apenergy.2016.11.041. Available from: https://doi.org/10.1016/j.apenergy.2016.11.041.

(19) Ghalebani A, Das TK. Design of Financial Incentive Programs to Promote Net Zero Energy Buildings. IEEE Transactions on Power Systems [Internet]. 2017; 32(1): 75-84. Doi: 10.1109/TPWRS.2016.2531090. Available from: https://ieeexplore.ieee.org/abstract/document/7438941.

(20) Marszal AJ, Heiselberg P. Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy [Internet]. 2011; 36 (9):5600-9. Doi: 10.1016/j.energy.2011.07.010. Available from: http://dx.doi.org/10.1016/j.energy.2011.07.010.

(21) Schiavoni S, Sambuco S, Rotili A, D’Alessandro F, Fantauzzi F. A nZEB housing structure derived from end of life containers: Energy, lighting and life cycle assessment. Building Simulation [Internet]. 2017; 10 (2):165-81. Doi: 10.1007/s12273-016-0329-9. Available from: https://link.springer.com/article/10.1007/s12273-016-0329-9.

(22) Schaeffer R, Szklo AS, Pereira AF, Borba BSMC, Nogueira LPP, Fleming FP, et al. Energy sector vulnerability to climate change: A review. Energy [Internet]. 2012; 38 (1): 1-12. Doi: 10.1016/j.energy.2011.11.056. Available from: https://doi.org/10.1016/j.energy.2011.11.056.

(23) Khan MA, Khan JA, Ali Z, Ahmad I, Ahmad MN. The challenge of climate change and policy response in Pakistan. Environmental Earth Sciences [Internet]. 2016; 75 (5): 1-16. Doi: 10.1007/s12665-015-5127-7. Available from: https://link.springer.com/article/10.1007/s12665-015-5127-7.

(24) Navarro L, Gracia Ad, Colclough S, Browne M, et al. Thermal energy storage in building integrated thermal systems: A review. Part 1. Active storage systems. Renewable Energy [Internet]. 2016; 88: 526-47. Doi: 10.1016/j.renene.2015.11.040. Available from: https://www.sciencedirect.com/science/article/pii/S0960148115304584?via%3Dihub.

(25) Deuble MP, de Dear RJ. Green occupants for green buildings: The missing link? Building and Environment [Internet]. 2012; 56: 21-7. Doi: 10.1016/j.buildenv.2012.02.029. Available from: https://doi.org/10.1016/j.buildenv.2012.02.029.

(26) Yang T, Athienitis AK. A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renewable and Sustainable Energy Reviews [Internet]. 2016; 66: 886-912. Doi: 10.1016/j.rser.2016.07.011. Available from: http://dx.doi.org/10.1016/j.rser.2016.07.011.

(27) Burnham JF. Scopus database: a review. Biomedical Digital Libraries. 2006; 3(1): 1. Doi: 10.1186/1742-5581-3-1. Available from: https://bio-diglib.biomedcentral.com/articles/10.1186/1742-5581-3-1.

(28) Brambilla A, Salvalai G, Imperadori M, Sesana MM. Nearly zero energy building renovation: From energy efficiency to environmental efficiency, a pilot case study. Energy and Buildings [Internet]. 2018; 166: 271-83. Doi: 10.1016/j.enbuild.2018.02.002. Available from: https://doi.org/10.1016/j.enbuild.2018.02.002.

(29) Huang P, Huang G, Sun Y. Uncertainty-based life-cycle analysis of near-zero energy buildings for performance improvements. Applied Energy [Internet]. 2018; 213: 486-98. Doi: 10.1016/j.apenergy.2018.01.059. Available from: https://doi.org/10.1016/j.apenergy.2018.01.059.